TB Modelling and Analysis Consortium Examining Approaches to Estimate Catastrophic TB-Related Costs in South Africa

Sedona Sweeney^a, Anna Vassall^a, Lorna Guinness^a, Mariana Siapka^a, Natsayi Chimbindi^b, Don Mudzengi^c, Gabriela B Gomez^a

^a London School of Hygiene & Tropical Medicine
^b Africa Health Research Institute, South Africa
^c The Aurum Institute, South Africa

Introduction

Why estimate disease-specific catastrophic costs?

- Economic evaluation (ECEA)
- Programme evaluation (poverty impact and SDG progress)
- Informing social protection
 - (esp. where poverty <=> disease)

			TAR	GETS
	MILES	TONES	SDG*	END TB
	2020	2025	2030	2035
Reduction in number of TB deaths compared with 2015 (%)	35%	75%	90%	9 5%
Reduction in TB incidence rate compared with 2015 (%)	20%	50%	80%	90 %
TB-affected families facing catastrophic cost due to TB (%)	0%	0%	0%	0%

Introduction

National surveys of costs faced by TB patients and their households implemented since 2016 and underway or planned in the next year

Aim: to investigate approaches to model estimates of national prevalence of catastrophic costs due to TB

Is it possible to get a 'reasonable' estimate of national prevalence of catastrophic cost using few, small and convenient sample studies?

Model description

1. Pooling & cleaning datasets

- Reconciling time periods, provider types, and calculation methods
- Adjusting to constant currency-year (2017 USD)
- Prediction of individual and household income from national surveys (regression)

1. Pooling & cleaning datasets

1. Pooling & cleaning datasets

- Reconciling time periods, provider types, and calculation methods
- Adjusting to constant currency-year (2017 USD)
- Prediction of individual and household income from national surveys (regression)

Author (Date)	Study Name	Provinces	Sample size (DS-TB patients)
Chimbindi (2005)	REACH	KwaZulu-Natal, Gauteng, Mpumalanga	1,229
Foster (2015)	XTEND	Gauteng, Free State, Eastern Cape, Mpumalanga	175 (cases); 35 (suspects)
Mudzengi (2016)	MERGE	Gauteng	156

Period definitions:								
Symptom	Seeking	Diagnosis received	Treatment: Intensive phase		Treatment: Continuation phase			hase
onset	Care		Month 1	Month 2	Month 3	Month 4	Month 5	Month 6

Data available:						
	MERGE (Mudzengi, et al. 2017) Provinces: Gauteng					
XTEND suspects (Foster et al, 2015)						
Provinces: Gauteng, Mpumalanga, Eastern						
Cape, Free State	<u> </u>					
	XTEND cases (Foster et al, 2015) Provinces: Gauteng, Mpumalanga, Eastern Cape, Free State					
	REACH (Chimbindi, et al. 2005) Provinces: KwaZulu-Natal, Gauteng, Mpumalanga					

1. Pooling & cleaning datasets Constructing the dataset: Reconciling cost categories

		Intensive phase				Continuation phase			
		MERGE n = 1	REACH n = 102	XTEND n = 172	One-way ANOVA (F statistic)	MERGE n = 146	REACH n = 1021	XTEND n = 172	One-way ANOVA (F statistic)
Total	direct medical cost								
	Study clinic	\$0.00	\$0.00	\$0.00		\$0.00	\$0.00	\$0.00	
	Other providers	\$0.00	\$4.09	\$29.33	0.93	\$5.24	\$12.92	\$5.26	3.25*
Direc	ct non-medical cost								
	Study clinic	\$0.00	\$1.65	\$0.66	8.27***	\$1.00	\$2.06	\$1.14	1.39
	Other providers	\$0.00		\$4.06	2.61	\$4.05		\$0.65	18.74***
Trans	sport hours								
	Study clinic	4.00	5.97	1.70	17.01***	18.26	14.27	1.31	37.70***
	Other providers	0.00		0.23	5.68**	0.45		0.15	46.10***
Cons	sult hours								
	Study clinic	4.00	6.95	1.11	4.79*	24.62	11.40	0.20	52.10***
	Other providers	0.00		13.30	2.35	9.37		1.65	31.93***
Total	l cost of 'special foods' or	supplements							
	Cost per phase	27.44	4.21	15.60	7.80***	50.83	4.21	15.60	185.70***

Time period reconciliation:								
Symptom	Seeking	Diagnosis received	Treatment: Intensive phase		Treatment: Continuation phase			
onset	Care		Month 1	Month 2	Month 3	Month 4	Month 5	Month 6

Data available:						
		MERGE (Mudzengi, et al. 2017) Income estimation: self- reported individual income				
XTEND suspects (Foster et al, 2015)						
Income estimation: self-reported individual						
income (brackets)						
	XTEND Income estimation: sel	cases (Foster et al, 2015) f-reported individual income (brackets)				
	REACH Income estimation: self-re	(Chimbindi, et al. 2005) eported household expenditures (brackets)				

1. Pooling & cleaning datasets Constructing the dataset: Reconciling income measures

Measuring income for catastrophic cost estimates: Limitations and policy implications of current approaches (Soc Sci Med 215, 7-15)

1. Pooling & cleaning datasets Constructing the dataset: Reconciling income measures

- Estimate income through quantile regression analysis linked to National Income Dynamics Study (NIDS) dataset
- Coefficients from regression results applied to predict household income for observations in pooled dataset
- Predictive power of the regression was relatively low – contributes substantial uncertainty in our ultimate estimates

	Quantile Regression
	(25 th quantile; Log)
Constant	4.26*** (0.06)
Urban	0.15*** (0.04)
Female	0.07* (0.03)
Educated ≥ grade 8	0.27*** (0.04)
Married / cohabitating	0.21*** (0.04)
Current TB	-0.28*** (0.04)
Employed	0.33*** (0.03)
Asset quintile (ref Q1)	
Quintile 2	0.20*** (0.04)
Quintile 3	0.48*** (0.05)
Quintile 4	0.73*** (0.04)
Quintile 5	1.37*** (0.05)
Age group (ref age 15-29)	
30-44	-0.09** (0.04)
45 and over	0.10* (0.05)
Province (ref: Eastern Cape)	
Free State	0.04* (0.07)
Gauteng	0.26*** (0.05)
Mpumalanga	0.13* (0.06)
Western Cape	0.26*** (0.05)
KwaZulu-Natal	0.24*** (0.04)

- 1. Pooling & cleaning datasets
- Reconciling time periods, provider types, and calculation methods
- Adjusting to constant currency-year (2017 USD)
- Prediction of individual and household income from national surveys (regression)

2. TB-related patient-incurred costs by income group & HIV status (meta-analysis v regression)					
Direct non-medical costs					
Direct medical costs					
Direct food costs					
Total travel and consultation time					

Two approaches to use existing data to parameterize model:

Meta-analysis

Adjusted mean values for each cost category using summary statistics from each dataset, by HIV status and SES quintile

Regression analysis

Generalised linear model with gamma distribution and log link for each cost category, using pooled primary datasets

Independent variables: urbanicity (1 = rural), education level (1 = educated to grade 8 and above), employment status (1 = employed), HIV status (1 = HIV positive), SES quintile (quintiles 1-5).

Marginal estimates by HIV status, SES quintile, employment status, with education/urbanicity held at mean for TB patients in South Africa

Model description

1. Pooling & cleaning datasets

- Reconciling time periods, provider types, and calculation methods
- Adjusting to constant currency-year (2017 USD)
- Prediction of individual and household income from national surveys (regression)

	Direct medical costs	Direct non- medical costs	Special foods costs	Travel and consultation time	Total Indirect Costs	Annual Household Income	Prevalence of Catastrophic Costs
Meta-analysis app	oroach						
Quintile 1	\$72.81	\$20.00	\$77.68	33.05	\$1.78	\$1,310	29%
Quintile 2	\$96.09	\$63.81	\$7.32	170.75	\$46.56	\$4,149	3%
Quintile 3	\$38.66	\$54.88	\$7.18	69.92	\$46.77	\$8,389	0%
Quintile 4	\$19.30	\$26.38	\$5.08	62.22	\$133.67	\$26,188	0%
Overall	\$64.72	\$40.26	\$34.10	82.77	\$48.07	\$7,636	11%
Regression approa	ich						
Quintile 1	\$48.25	\$9.08	\$24.04	60.1	\$2.22	\$1,311	14%
Quintile 2	\$29.77	\$26.31	\$26.23	162.73	\$74.25	\$4,165	4%
Quintile 3	\$29.11	\$37.25	\$18.14	16.81	\$11.33	\$8,349	0%
Quintile 4	\$33.60	\$62.89	\$21.82	16.68	\$32.16	\$25,929	0%
Overall	\$36.42	\$28.36	\$23.14	71.84	\$31.31	\$7,478	6%

Comparing results

Cohort model allows for adjustment of demographics and treatment phase

– Uncertainty was slightly reduced in the individual-level analysis

Usefulness of this approach depends on purpose

- year-to-year monitoring vs rough estimation for other policy purposes

"No amount of statistical analysis can compensate" for underlying uncertainty in the data (Graves 2002)

Better data is needed:

- On costs of care across the TB pathway, but especially before receipt of diagnosis
- On individual and household income for people with TB

Thank you!

Any questions?

Sedona.Sweeney@lshtm.ac.uk

@SedonaSweeney

lshtm.ac.uk/CHIL @LSHTM_CHIL

Funding:

Bill & Melinda Gates Foundation through the Global Health Cost Consortium

ghcosting.org @GHcosting

Acknowledgements: Carol Levin, Carlos Jesus Pineda Antunez (GHCC)

MERGE study team: Piotr Hippner, Tendesayi Kufa, Katherine Fielding, Alison D Grant, Gavin Churchyard

XTEND study team: Susan Cleary, Lucy Cunnama, Gavin Churchyard, Edina Sinanovic

REACH study team: Jacob Bor, Marie-Louise Newell, Frank Tanser, Rob Baltussen, Jan Hontelez, Sake J.de Vlas, Mark Lurie, Deenan Pillay, Till Barnighausen