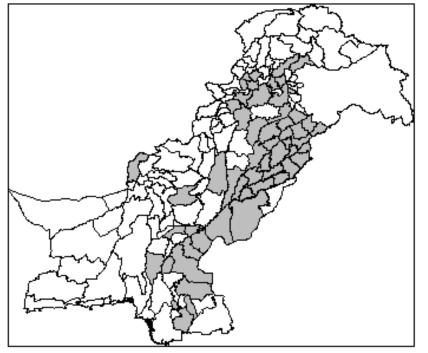
SAE-LM modelling using TB prevalence survey data

Fulvia Mecatti

Ă University of Milano-Bicocca

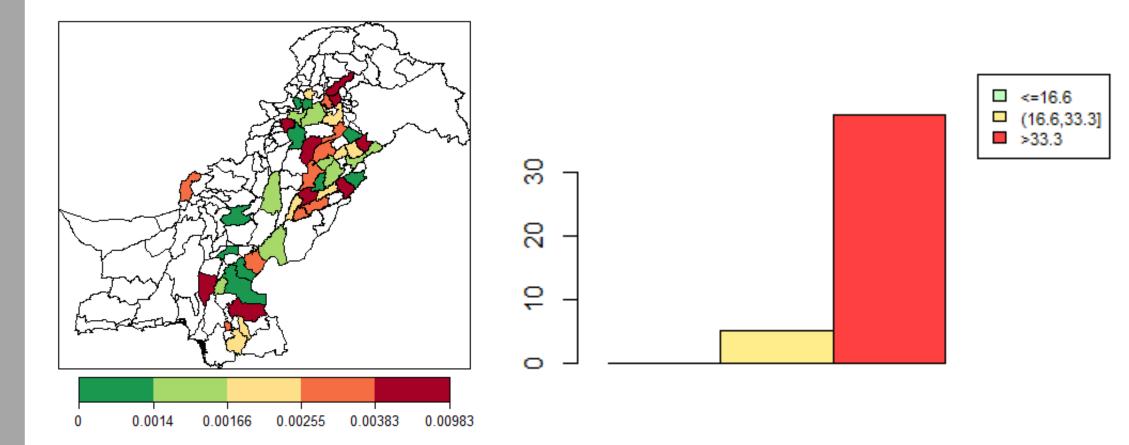
TB MAC & WHO Annual Meeting 2019, Istanbul, 01-04 October


What SAE-LM modelling is

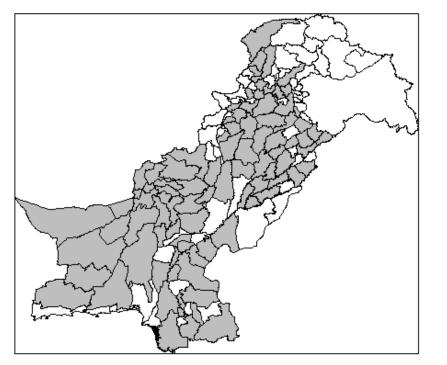
New methodology for decomposing a national estimate into sub-national estimates PhD thesis 2016, paper on *ISR* 2018

Small Area Estimation integrated with Latent Markov modelling

Showcase: Population based national TB prevalence survey among adults in Pakistan, Aug 2010 – Dec 2011 Pulmonary TB Bact+ ≥ 15 years


Why a SAE problem

Sampled (gray) & non-sampled districts


- National survey designed to produce a national estimate with controlled precision 20% max error at 95% c.l. upon a sample of 133,000 adult individuals from 95 clusters (thensils = sub-district areas) selected according to the RedBook guidelines.
 - Random sample size too small for accurate estimation of district-wise prevalence, limited to 68 districts which either intersect or include at least one sampled cluster (thensil). Otherwise no sample data available

Direct estimates for sampled districts and their CVs (%)

SAE-LM basic idea

districts with complete covariates

To borrow straight from out-of-sample auxiliary data (model covariates)

Notification and Census auxiliary Iongitudinal data shared by Pakistan NTP and TB Hack team circa 30 covariates, 2011-2016 (2017) 96 districts – 47 sampled, 49 zero sample size

SAE-LM Rational

- Full exploit of both cross-sectional data (2010-11 national survey) and longitudinal auxiliary data (2011-2016 @district level)
- **True district prevalence values as latent responses,** partially and indirectly measured at 6 successive time points, *i.e.* a underlying Latent Process
- Distribution in space and evolution in time modelled via a (discrete, 1° order) Markov Chain and a Hierarchical Bayes approach

SAE-LM at work (basics)

1. (SAE) **Sampling model**

Probability distribution of **Direct estimates** (input) conditioned on the true values of district prevalence

2. Measurement model

Probability distribution of the true values of district prevalence given the *covariates* (measurable part of the underlying latent process)

3. Latent model (Markov Chain) will catch all the residual heterogeneity un-observed and un-explained

SAE-LM at work (basics)

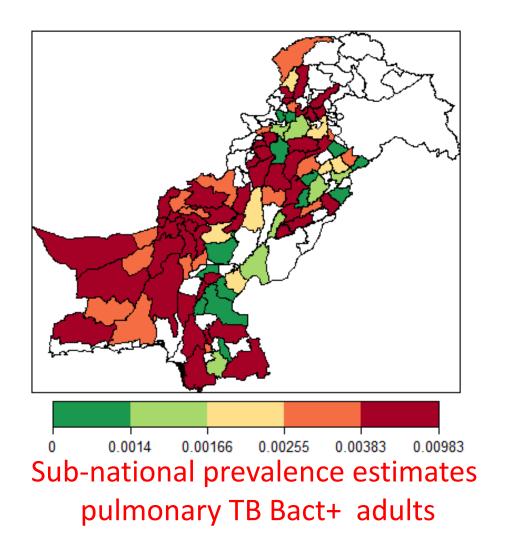
Fitting Monte Carlo (Gibbs sampler)

60,000 MC runs, after 30,000 burn-in period for each combinations of (selected) subset of covariates and # of latent states

SelectionInformation Criterion based on maximum likelihood
measure of goodness of fit: Chib's (marginal likelihood)
validated by BIC and AIC both in accordance

Validation via several diagnostics tools

SAE-LM: Limits & Strengths

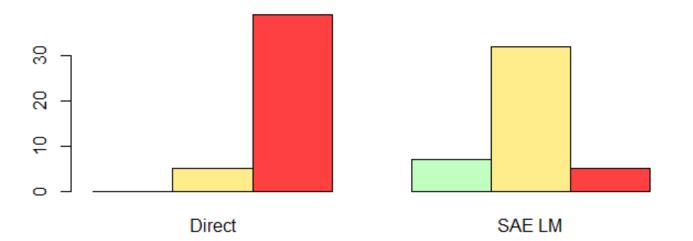

resource consuming

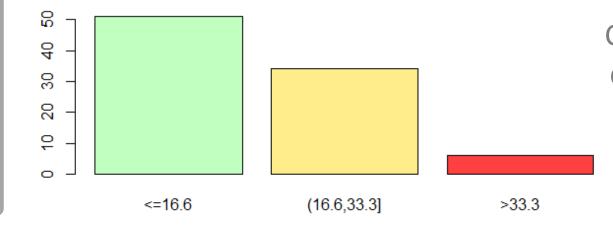
adequate statistical skills, computational power and time required

- unfamiliar Bayesian approach to estimation chosen over more familiar frequentist fixed parameter paradigm
- **Posterior Probability Distribution (MCMC Gibbs)** Missing value Imputation (non-sampled districts no direct estimate in input) 95% Credible Intervals

model Output

rich, easy to read, ready-to-use & includes a predictive engine

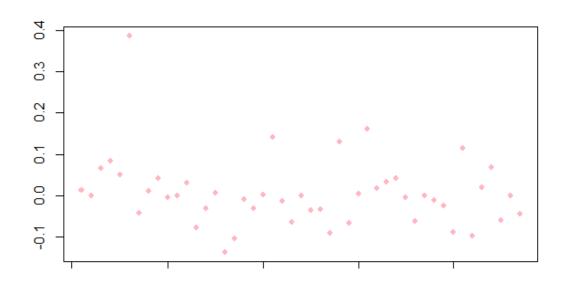

 District-wise TB prevalence (indirect, point) estimates (Distribution in space)


Evolution in time of TB burden Indirect estimates for each point in time

	Direct	Indirect Estimates					
District	Estimates	2011	2012	2013	2014	2015	2016
abbottabad	0.00562	0.00550	0.00522	0.00516	0.00476	0.00467	0.00480
attock	0.00143	0.00144	0.00143	0.00143	0.00145	0.00147	0.00151
awaran		0.00347	0.00307	0.00400	0.00303	0.00357	0.00436
badin	0.00222	0.00156	0.00156	0.00153	0.00152	0.00153	0.00157
bahawal nagar	0.00484	0.00400	0.00377	0.00374	0.00469	0.00410	0.00408
bannu		0.00646	0.00622	0.00557	0.00587	0.00520	0.00446
$\operatorname{barkhan}$		0.00406	0.00424	0.00472	0.00515	0.00577	0.00476
bhakkar		0.00478	0.00486	0.00530	0.00516	0.00509	0.00499
chagai		0.00881	0.00747	0.00876	0.00847	0.00587	0.00783
chakwal		0.00409	0.00420	0.00436	0.00446	0.00434	0.00411
$\operatorname{chiniot}$	0.00147	0.00097	0.00097	0.00095	0.00096	0.00095	0.00100
chitral		0.00353	0.00266	0.00284	0.00308	0.00315	0.00385
dadu	0.00983	0.00597	0.00597	0.00557	0.00486	0.00443	0.00454
dera bugti		0.00008	0.00442	0.00849	0.01000	0.00792	0.00886
	•			•			
•	:			:			:
thatta		0.00698	0.00688	0.00675	0.00679	0.00672	0.00641
toba tek singh	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
upper dir		0.00236	0.00261	0.00287	0.00283	0.00268	0.00253
vehari	0.00355	0.00400	0.00407	0.00397	0.00365	0.00336	0.00335
washuk		0.00621	0.00764	0.00790	0.00817	0.00913	0.00877
zhob		0.00284	0.00414	0.00371	0.00345	0.00344	0.00301
ziarat		0.00269	0.00320	0.00361	0.00383	0.00146	0.00168

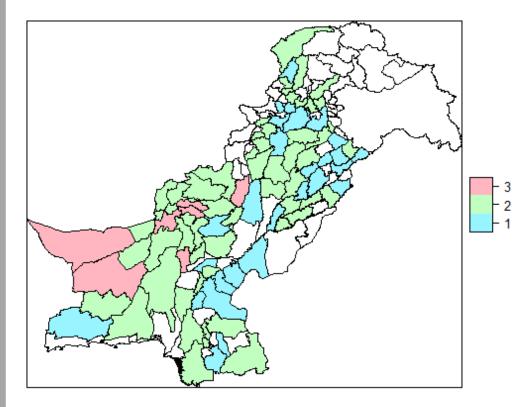
SAE-LM Results Validation

Comparing CVs of direct and indirect SAE-LM estimates for sampled districts


CVs of indirect SAE-LM district-wise estimates

SAE-LM Results Validation

The parts fit the whole


0.00361average aggregation of the 96district-wise indirect SAE-LM estimates

0.00364 national estimate 2010-11 Pakistan TB prevalence survey

(Direct - Indirect SAE-LM)

vs sampled districts sorted according to the variability (SE) direct estimates

- Classification of Pakistan districts into three classes of increasing TB burden (the 3 latent states of the latent model)
 - Widely though not entirely reflecting the previous indirect estimates subnational distribution: some relevant determinant(s) of the districtdistribution remain(s) un-measured, not included into the model covariates, so caught by the latent model as residual heterogeneity

	overall average probability, for a given district,			
Initial Probabilities	to be classified into			
$\left(0.322, 0.587, 0.091 ight)$	at time of national prevalence survey			

Transition Probabilities

(0.975	0.012	0.014	
	0.005	0.984	0.010	
	0.021	0.033	0.946	

for any district classified in a given class of TB burden (rows) will predict the chance for that district to change class in the future, moving backward (improving) or forward (worsening) across the matrix columns

Thank you

SAE-LM Uncertainty Intervals

District	point	95% Bayes		95%	
	estimates	Credible Intervals		Confidence Intervals	
Abbottabad	0.00550	[0.00399,	0.00699	0.00401	0.00699]
Attock	0.00144	0.00070,	0.00211	0.00073,	0.00214]
Awaran	0.00347	[0.00251,	0.00442]	[0.00252,	0.00443]
Badin	0.00156	[0.00066]	0.00238	[0.00068]	0.00243]
Bahawal Nagar	0.00400	[0.00265,	0.00542]	[0.00262,	0.00538]
Bannu	0.00646	[0.00620]	0.00672	[0.00620]	0.00672
Barkhan	0.00406	[0.00332]	0.00478	[0.00333]	0.00478
Bhakkar	0.00478	[0.00457,	0.00499]	[0.00457,	0.00499]
Chagai	0.00881	[0.00801,	0.00960	[0.00801,	0.00960
Chakwal	0.00409	[0.00388,	0.00430]	[0.00388,	0.00430]
Chiniot	0.00097	[0.00033,	0.00161]	[0.00033,	0.00161]
Chitral	0.00353	[0.00320,	0.00386]	[0.00320,	0.00386]
Dadu	0.00597	[0.00444,	0.00751	[0.00443,	0.00751
•	•				
•	:	:		:	
Thatta	0.00698	[0.00675,	0.00721]	[0.00675,	0.00721]
Toba Tek singh	0.00000	ι ,		L ,	
Upper Dir	0.00236	[0.00201,	0.00269]	[0.00202,	0.00269]
Vehari	0.00400	[0.00246]	0.00555	[0.00248],	0.00553
Washuk	0.00621	[0.00513]	0.00722	[0.00517]	0.00724
Zhob	0.00284	[0.00256]	0.00313	[0.00255]	0.00313
Ziarat	0.00269	[0.00156]	0.00382	[0.00157,	0.00381

SAE-LM model specification (basics)

Main assumptions

 P_{dt} are conditionally independent given U_{dt} , that is the true values of district prevalence depend only on the underlying latent process.

The latent state to which a district belongs at a given time point only depends on the latent state at the previous point in time.

SAE-LM model specification (basics)

direct district prevalence estimates given (conditioned on) true district prevalences

Sampling (SAE) model

$$\hat{P}_d | P_d \sim N \left(P_d, \Sigma_d \right)$$

true district prevalence given covariates, i.e. the measurable part of the latent process

Measurement model $P_{dt}|(U_{dt} = u) \sim N\left(\underline{x}_{dt}\underline{\beta}_{u}, \sigma_{u}^{2}\right)$

probability distribution (discrete and dynamic in time) of the residual un-observed part of latent process, not explained by the upper hierarchy

Latent model

 $\begin{array}{lll} U_{dt} = u \sim & (1 \mathrm{st \ order}) \ \mathrm{Markov \ chain \ with} \\ k & \mathrm{latent \ states} \ u = 1, 2 \dots k \\ \begin{bmatrix} \pi_u \end{bmatrix} & k \times 1 \ \mathrm{vector \ of \ initial \ probabilities} \\ \begin{bmatrix} \pi_{u|u'} \end{bmatrix} & k \times k \ \mathrm{matrix \ of \ transition \ probabilities, \ constant \ in \ time} \end{array}$

SAE-LM model specification (basics)

Small Area parameters $[P_{dt}]$ $D \times 6$ matrix of indirect area estimates primary output

• Measurement parameters $\begin{bmatrix} \underline{\beta}_u, \sigma_u^2 \end{bmatrix} 2k \times 1$ vector of regression coefficients and error variances

• Latent parameters $[\pi_u]$ k vector of initial probabilities,

 $\begin{bmatrix} \pi_{u|u'} \end{bmatrix}$ k × k matrix of transition probabilities.