Bayesian evidence synthesis to estimate subnational TB incidence: an application in Brazil

> Melanie H. Chitwood, MS Yale School of Public Health

Motivation

- Understanding the geographic distribution of untreated active TB can help target efforts to strengthen TB control
- Aim: Using only routinely available data, develop and apply a new method for estimating incidence and the fraction of incident cases that receive treatment

Model: Framework

Yale school of public health

Data Inputs

- For each Brazilian state and the Federal District (n = 27) from 2007 – 2016:
 - Tuberculosis treatment notifications
 - Death records for TB-related and ill-defined causes
 - Demographic and health system survey data
 Population, GDP, primary healthcare coverage

Data Inputs

Derived inputs

- Mortality system coverage estimates
- Probability that a TB death is coded with a TB-related ICD-10 code
- Probability of survival given no treatment

Model: Likelihood Functions

Case Notifications_{ij} ~ Poisson(
$$\gamma_{ij} * \alpha_{ij} * \beta_{ij}$$
)
TB Mortality_{ij} ~ Poisson($\gamma_{ij} * \alpha_{ij}$
 $* [(\beta_{ij} * \delta_{ij}) + ((1 - \beta_{ij}) * \mu)] * \pi_i * \rho_{ij})$

- γ_{ij} population
- α_{ii} incidence
- β_{ii} fraction treated
- δ_{ii} probability mortality | treatment initiation

Yale school of public health

- μ probability mortality | no treatment initiation
- π_i mortality system completeness
- ρ_{ij} adjustment for systematic underreporting of TB as cause of death

Model: Transformed Parameters

$$Incidence_{i} = \alpha_{i} = exp \left(\varphi_{0} + \varphi_{1ij} + \varphi X_{ij} \right)$$

Fraction Treated_i = $\beta_{i} = logit^{-1} \left(\omega_{0} + \omega_{1ij} + \omega X_{ij} \right)$

- φ_0 and ω_0 are constants
- φ_{1ij} and ω_{1ij} are state-time random effects, allowed to follow a random walk
- X_{ij} is vector of state-level covariates (GDP per capita, primary healthcare coverage); φ and ω are vectors of regression coefficients

Outcomes: 2016 Estimates

Incidence rate

Fraction treated

Yale school of public health

Outcomes: 10-year time trend

- Does not require primary data collection
- Distinguishes between areas with low burden and areas of low fraction treated.
- Model leverages known relationships between treatment and mortality
 - Internal consistency creates opportunities for model checking

Limitations

- Data limitations: treatment free survival, TB death under-reporting
- Multiple databases, no consistent patient ID among them: GAL-TB, SINAN-TB, SITE-TB
- Treatment reporting assumption is valid in Brazil, but may not hold in other settings

Acknowledgements

- Nick Menzies, Harvard T.H. Chan School of Public Health
- Ted Cohen, Yale University School of Public Health
- Marcia Castro, Harvard T.H. Chan School of Public Health
- Mauro Sanchez, University of Brasilia
- Denise Arakaki, Patricia Oliveira, Daniele Pelissari, Gabriela Marques da Silva, and Marlí Souza Rocha, Brazilian Ministry of Health
- Philippe Glaziou, WHO