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Feasibility — what it is and why it matters ﬁ%%ﬁﬁ@

Ranking and

optimisation Local norms determine policy priorities as well as
structure of health systems and institutions
Multiple Feasibility/ acceptability or “ease of
objectives implementation” is an objective?

Priority

setting

Non- Local demand- and supply-side constraints around
financial the feasibility of implementation must be
constraints Considered
User- - Limit pace of scale-up

friendly - May incur costs for relaxing (if possible)
local models
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« Research question: how have health system elements (non-financial
constraints, policy objectives) been incorporated in mathematical model-
based analyses of infectious disease control interventions?

« Databases searched on 9t" May 2019: Medline, Embase, Scopus

 Inclusion criteria:
o English language
o Topic related to human health

o Reference to a formal method of applying non-financial constraints in
priority setting using an infectious disease control model
o Eligible article type:
* Infectious diseases modelling study
« Systematic review
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Study settings

8 Global studies
2 Regional studies:

- South East Asia

- sub-Saharan Africa
13 Country level studies
8 facility specific studies
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Porwered by Bing
PMSFT, Microsoft, Mawinfo, Thinkwarne Extract, Wikipedia
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Vast majority (n=25, 78%) are deterministic compartmental models
Four analyses use agent-based simulations

One influenza study compares a compartmental model to an agent-
based simulation

One study on yaws uses a stochastic compartmental model (transmission
rates not determined by ordinary differential equations)

Three models are ‘static’ (force of infection does not change over time)

13 studies included some kind of economic analysis:
o 5 cost-effectiveness analyses (2 on HIV and 3 on TB)
o 8 cost analyses

5 studies set priorities by optimising under a budget constraint
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Method for identifying constraints Method for quantifying extent and impact of constraints
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Constrained Unconstrained
estimation estimation

 Limit effects of * Include costs of « Constrained
the specific relaxing the estimation + costs
Intervention constraints e Constrained
e Limit effects * Include estimate estimation +
along the of non-financial resources
diseases cascade resource * All of the above
+ Limit effects requirements

system-wide



Example 1 — Constrained model limiting
Intervention Effects g | Vaceination before the peak of pandemic waye
Shim (2011) e

+ Objective: compare age-specific HIN1 vaccination
allocation between a Nash (own interest) and a
utilitarian (optimal for the population) strategy

« Method: model compartments further subdivided
based on whether or not individuals decide to 5.
vaccinate. Model calculates probability of infection £
based on the decision. Expected costs of infection
and vaccination are then calculated for vaccinated I
and refusers based on probabilities "ol

1 1
04 ¥ 524 Y 2543 ¥ 5064 ¥ Bd+ Y
Ages

Figure 9 Nash strategy when vaccine is available at the
beginning of an influenza pandemic and when vaccination is
offered free of charge.



Example 2 — Unconstrained
estimates including costs of
‘relaxing’

Stebnerg (2017)

« Objective: estimate impact of scaling up
interventions to reach health-related SDGs
as well as resource gaps under different
health system constraints scenarios

« Methods: projections generated using
Spectrum models for the respective disease
areas. Gap estimated between current
provision and universal coverage and
country-specific programme costs multiplied
by this gap. Costs estimated from OHT
(WHO-CHOICE) and from the literature for
disease/programme areas not covered.
Progress towards 2030 targets adjusted by
level of 'strength' of the health system

450 [ Disease-specific and

programme-specific costs
400+ 3 additional health programme
- costs
350 I B__ @ Commodities and supplies
= 300 [ Health system investment needs
= _ [ Health information systems
A — — [ Health workforce
- 250 : !
w O Infrastructure for service delivery
= (including facility construction,
- 2004 . Ry
= medical equipment, and
g operational cost)
= 1509 L ad] [ Emergency preparedness, risk
management, and response
100+ (including international health
regulations)
504 [ Governance
[ Health financing policy
Supphy chain
0 T T T T T T T L B Supply
B

Platform 1: policy and

population-wide interventions
overarching functions (10%)
(10%) ) Platform 2: periodic
schedulable and
outreach services

(5%)

Platform 4:
specialised care _
(19%)

Platform 3: first-level
clinical services

(57 %)

Figure 2: Additional investments required in 67 low-income and middle-income countries to meet
Swstainable Development Goal 3 (U5$ 2014 billion) (A) and additional resource needs by service delivery
platform (B) inthe ambitious scenario

Additional health programme costs include those that are programme specific but do not refer to specific drugs,
supplies, or laboratory tests. Examples include costs for programme-specific administration staff, supervision, and
monitoring relative to the services for which the programme provides leadership and oversight (eg, the national
malaria programme provides implementation guidance, and monitors and supervises service delivery for
malaria). Other examples include mass media campaigns and demand generation. These data are presented as a
table in the appendix.




Example 3 —
Unconstrained estimates
including non-financial
resource requirements

Krumkamp (2011);
Rudge (2012);
Adisasmito (2015)

AsiaFluCap
simulator

Source: Stein M.L., et al. (2012). Development of a resource
modelling tool to support decision makers in pandemic influenza
preparedness: The AsiaFluCap Simulator. BMC Public Health, 12.
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Figure 1 Schematic overview of the AsiaFluCap Simulator structure and processes.




4. Xpert utilisation + Xpert negative algorithm
. Cough triage in 100% of known HIV+ clinic attendees
6. Cough triage in 90% of PHC attendees

BOZZ&Ili (2018) . Symptom screen in 100% of known HIV+ clinic attendees

8. Symptom screen in 90% of PHC attendees

Example 4 — Combination (effects + costs)
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Approaches for implementing constraints in SChoor

&TROPICAL \ (] JNE

mOde].S MEDICINE “\g==

1. Transmission model-based estimation

2. Linking models: transmission + operational

3. Linking models: transmission + system dynamics

4. Constrained optimisation (other than budget)




Attaching unit
costs/resources

to model
outputs

Bozzani (2018)
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Figure2. Model projection of future costs, human resource requirements, and Xpert test:tuberculosis (TB) notification ratio (ratio of number of Xpert
tests (Xpert MTB/RIF assay; Cepheid Inc., Sunnyvale, Califomia) to number of TB notifications) of the TB control program in South Africa, 2016—2035.
Symbaols show the median model prediction for each intervention from 2016 to 2035. A) Total costs of TB control activities, in millions of US dollars;
B) nurse time spent on TB activities, in millions of minutes; C) Xpert:notification ratio. In panels A and B, solid lines show results for the low (most
restrictive) constraints, dotted lines show results for the medium constraints, and dashed lines show results for the high (least restrictive) constraints.
In panel C, results are shown (dashed line) for only a single constraint (a ratio of 20:1). HIV4, positive for human immunodeficiency virus; MTB, Myco-
bacterium tuberculosis; PHC, public health clinic; RIF, rifampin.

Source: Sumner T., et al. (2019). Estimating the impact of tuberculosis case detection in constrained health systems: An example of case-findingin
South Africa. Am ] Epidemiol, 188(6):1155-1164



Table 2 List of inputs into and outputs from the operational and transmission models. The linkage between the two
models results from using model outputs from one model as inputs for the other

Operational model

Input Qutput

Average number of tuberculosis suspects coming for Average time to receive diagnosis —

diagnosis per diagnostic centre per day Loss to follow-up (diagnostic default) —
Proportion of smear-positive tests Number of visits to diagnostic centre
Treatment times Diagnosis outcomes
Number of microscopy staff at diagnostic centre |I Treatment outcomes
Laboratory time per sample Time to complete treatment
Staff shift patterns Default in treatment
Physician availability Number of samples processed
Probability of default during diagnostic and treatment Health system costs

pathways Patient costs
Transport availability for samples
Unit costs

Transmission model
Qutput Input
= Tuberculosis incidence Transmission rate

Tuberculosis prevalence Primary progression rate

Reactivation rate
Natural cure rate
Tuberculosis-specific mortality
Diagnostic test performance—sensitivity
" Loss to follow-up (diagnostic default)
Duration parameters (e.g., from symptom onset to e
health centre visit, from seeking diagnosis to
receiving diagnosis)
Tuberculosis treatment parameters (e.g., fraction of
initial defaulters, treatment success rate, treatment
failure and death rate)

Linking transmission : use operational modelling to assess impact of new TB
and operational diagnostics on health system costs, infrastructure, patient access

models and outcomes

: operational model used to parametrise a transmission
: model, limiting intervention effects based on HR availability,
LLélllrrllg(lzgll(IQ).Oaer; diagnostic pathway bottleneck and affordability
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FIGURE 2. Projected differences in new infections (left) and people living with diagnosed HIV infection (right), for scenarios with
annual testing offers in routine medical care and 3 levels of implementation.

Linking transmission : assess how changes in HIV testing and care law

and system dynamics impact epidemic outcomes and resource needs at different
models levels (low, high and perfect) and timings of implementation

: system dynamics model integrating stock and flow
diagrams of HIV testing and care and of the HIV testin% law

Martin (2015a and 2.015b) structure. Transmission rates determined based on ‘H
stock, which determines CD4 count

V stage’




Source: Martin 2015b
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Optimising under
(non-budget)
constraint

Martin (2011)

: assess how
constraints (max annual
budget) and policy objectives
(minimise prevalence and
health utility losses) affect
optimal timing and scale-up,
and the subsequent costs
and impact of an antiviral
treatment intervention
among IDUs

. constrained
optimisation scenarios
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Figure 1. Scenario A: Minimising health service costs and HCV health wtility losses. Simulations are with a 30% baseline prevalence,
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