"Modeling LTBI What are the key issues to consider?

> Dr Dick Menzies, Montreal Chest Institute, McGill International TB Centre

Overview

- The problem Treating active TB does not seem to be enough
- The solution: Treat Latent TB
- The problem(s) with that solution:
 - Diagnosis of LTBI
 - Treatment of LTBI
 - Health systems scale up the Cascade of Care approach
 - Who should be treated?
 - How often should LTBI be treated?
 - Reservoirs and resurgences

What is the current Global burden of LTBI?

- It is estimated that 25% of the total global population has latent TB
- That's about 1.9 BILLION people
- If 10% will develop active TB, then about 190 million will develop TB
- How will we ever stop that????

What is the current impact of treatment on the Global burden of LTBI?

All Latent TBSuccessfully treated

Where to start?

DIAGNOSIS OF LATENT TB

TST vs IGRA

TST

- <u>Good Points</u>:
 - Relatively inexpensive
 - Can be done anywhere
 - Simple to learn
 - Reproducible
- <u>Bad points</u>:
 - Sub-optimal specificity
 - Sub-optimal sensitivity
 - Affected by immune deficiency
 - Requires proper technique
 - OLD test

IGRA

- <u>Good points</u>:
 - Excellent specificity
 - No adverse effects
 - Lab-based = objective
 - NEW test
- <u>Bad points</u>:
 - Sub-optimal sensitivity
 - Affected by immune deficiency
 - Less accessible. Need a lab
 - More expensive
 - Not reproducible on serial testing

Incidence of active TB after a positive IGRA

(from Rangaka L, et al, Lancet ID 2015)

Country	N	Test	Incidence of active TB in IGRA+ groups
The Gambia [Hill et al. 2008]	2348	ELISPOT (in-house)	9/1000 person-yr
Turkey [Bakir et al. 2008]	908	ELISPOT (T-SPOT.TB)	21/1000 person-yr
S Africa [Mahomed et al. 2009]	5248	QFT	6/1000 person-yr
Colombia [del Corral et al. 2009]	2060	In-house whole-blood CFP-10 assay	11/1000 person-yr
Senegal [Lienhardt et al. PLoS One 2010]	2679	ELISPOT (in-house)	14/1000 person-yr

Ability of IGRA or TST to predict TB

- Several large scale studies with IGRA and many older studies with TST completed
 - Predictive ability of IGRA somewhat better than TST.
 - But not significantly better
- No test accurately predicts active TB
 - HH Contacts with positive TST or IGRA: Annual risk of TB is 1-2%
 - Recent study QFT conversion TB developed in 1.4% within 12 months
- Makes treatment of LTBI very 'inefficient'

Individual vs Public Health benefit WHO SHOULD BE TREATED?

Relative Risk for Developing Active TB by Selected Clinical Conditions*

Clinical Condition	<u>Relative Risk</u>
HIV/AIDS	30 - 100
Silicosis	30
TNF alpha inhibitors	12 - 20
Renal failure/hemodialysis	10 – 25
Solid organ transplantation:	25 - 63
Fibronodular Xray	5.5 – 18
Diabetes mellitus	2.1 - 4.0
Low body weight (<85% IBW)	2.6
Cigarette smoking	1.5 - 3.1
Heavy alcohol use	2.9

*Relative to control populations; independent of tuberculin skin test status

Highest Population attributable fraction

Source: Lonnroth, Lancet, 2010

- Malnutrition (underweight): 27%
- Smoking (and alcohol): 20%*
- HIV infection: 14%
- Diabetes/other medical illnesses: 9%

PAF just due to smoking - ranges from: 9% in SSA to 24% in WPRO, and 28% in EER

How should Latent TB be treated? TREATMENT OF LATENT TB

LTBI treatment – what are the options?

- 6 months of INH
- 9 months INH
- 3-4 months INH & RIF
- 3 months once weekly INH& Rifapentine
- 4 months RIFampin

Duration of INH Therapy and efficacy/effectiveness Eastern European trial: Patients with Fibrotic Lesions

Population	Duration Reduct	<u>tion in TB</u>
All participants	INH 12 mo.	75%
	INH 6 mo.	65%
	INH 3 mo.	21%
Completer/compliers	INH 12 mo.	93%
	INH 6 mo.	69%
	INH 3 mo.	31%

Bull WHO 1982;555-64

Mortality from INH hepatitis

Study	Years	Age	Mortality (per 100,000)
USPHS surveillance	1971-72	< 35	0
		> 35	98
IUAT trial	1969-72	35-65	14
CDC surveillance	1972-3	All	54
	1974-83	All	14
	1984-8	All	6
Salpeter survey	1983-92	< 35	0.6
		> 35	2.4

3 months once weekly INH & Rifapentine vs 9 months daily INH: Completion and Incidence of active TB (*Sterling et al NEJM 2011*)

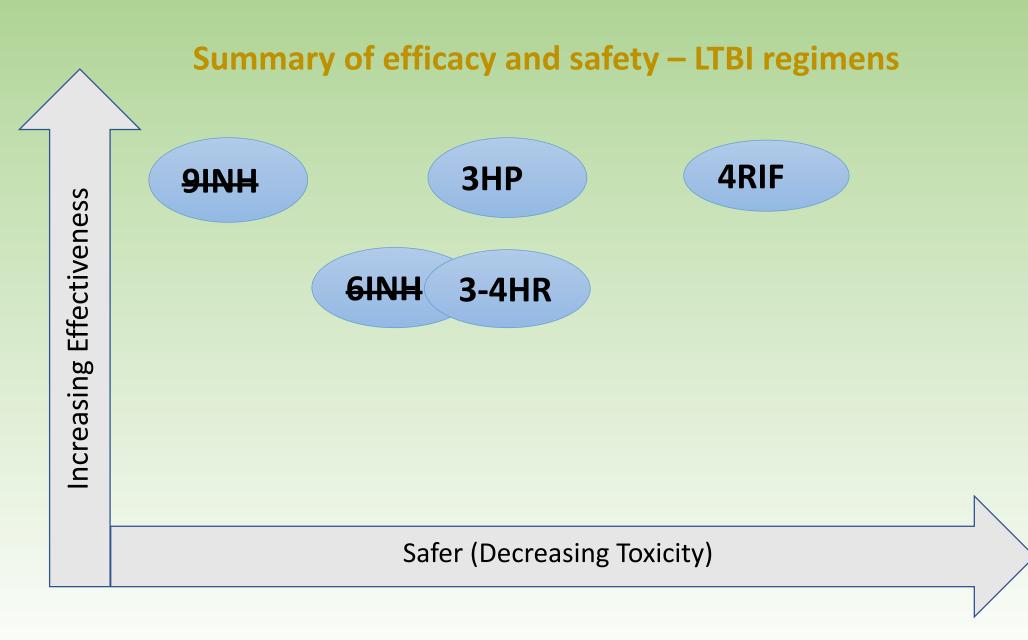
	9INH	3HP
Randomized (MITT)	3649	3895
Completed	2536 (69%)	3190 (82%)
TB Disease - All patients	12 (0.4%)	7 (0.2%)
- Completed	5 (0.2%)	4 (0.1%)

3 months once weekly INH & Rifapentine vs 9 months daily INH: Adverse Events (Sterling et al NEJM 2011)

	9INH	3HP
Randomized	3649	3895
Total- Grade 3-4 AE	7.4%	6.0%
Drugs stopped for AE	3.6%	5.0%
Hepatotoxicity	2.8%	0.5%
Hypersensitivity	0.8%	4.0%

A randomized trial to compare effectiveness and efficacy of 9 months Isoniazid and 4 months Rifampicin for Latent Tuberculosis infection treatment in children and adults Diallo et al, NEJM 2018; Menzies et al NEJM 2018

Dick Menzies, Menonli Adjobimey; Rovina Ruslami; Anete Trajman; Oumou Sow; Heejin Kim; Joseph Obeng; Richard Long; Kevin Elwood; Hamdan Aljahdali; Guy Marks; Martin Gninafon; Lika Apriani; Raspati Koesoemadinata; Victoria Cook; Philip Hill; Kevin Schwartzman; Karen Hornby; Chantal Valiquette; Andrea Benedetti;

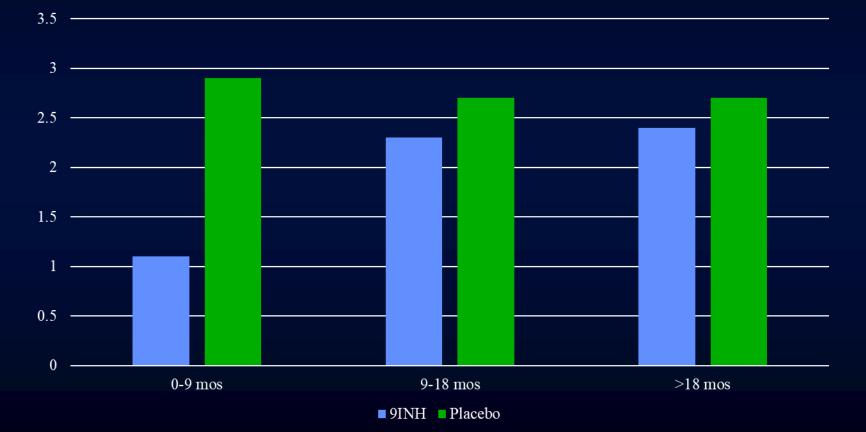

Study funded by: CIHR

Adults: Grade 3-5 AE, Drug Stopped, and Judged By Panel as Possibly/Probably Related to Study Drug

		9INH (N=3205)	4RIF (N=3280)	Risk Difference 9H-4R
Total	Drug Stopped + Grade 3-5 AE + Judged by Panel	119 (3.7)	53 (1.6)	-
Total	Judged Probably/Possibly Related to Study Drug	75 (2.3)	31 (0.9)	1.4 (0.8, 2.0)
Ra	ash or other allergy	2 (0.1)	6 (0.2)	-0.1 (-0.3, 0.1)
D	rug Interaction	0 (0.0)	2 (0.1)	-0.1 (-0.2, 0.0)
He	epatotoxicity	65 (2.0)	11 (0.3)	1.7 (1.2, 2.2)
G	I Intolerance	1 (0.0)	3 (0.1)	-0.1 (-0.2, 0.1)
He	ematologic	0 (0.0)	6 (0.2)	-0.2 (-0.3, 0.0)
Pr	regnancy	2 (0.1)	2 (0.1)	0 (-0.1, 0.1)
O	ther	4 (0.1)	1 (0.0)	0.1 (0, 0.2)
De	eath	1 (0.0)	0 (0.0)	0 (0, 0.1)

Adults: Incidence of active TB – MITT analysis

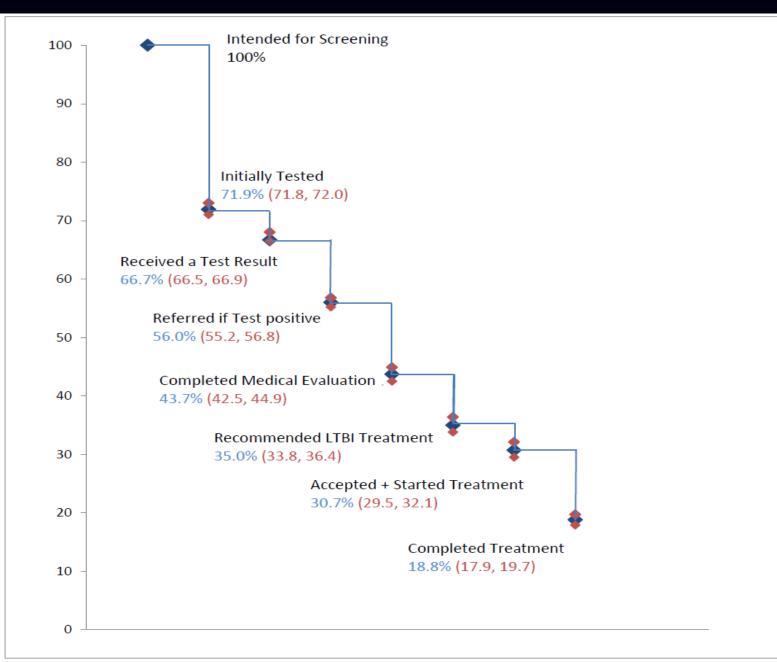
	9INH	4RIF	Rate Difference (9H – 4R)
Total in MITT analysis	3,416	3,443	-
Total person years of follow-up	7,853	7,945	-
Microbiologically confirmed active TB	4	4	-
Clinically diagnosed (judged active TB by Review Panel)	5	4	-
Total Active TB (confirmed and probable)	9	8	
Incidence of confirmed active TB (per 100 person years - 95% CI)	0.05 (0.02, 0.14)	0.05 (0.02, 0.14)	0.0 (-0.16, 0. 16)
Incidence of all active TB - confirmed and probable clinical (per 100 person years - 95%CI)	0.12 (0.06, 0.22)	0.10 (0.05, 0.20)	0.01 (-0.24, 0.21)


How often? How long? **RECURRENCE OF TB AFTER TREATMENT**

Isoniazid prophylaxis among Alaskan Eskimos: a final report of the Bethel Isoniazid studies

(Comstock GW, Baum C, Snider DE Jr. Am Rev Respir Dis. 1979 May;119(5):827-30)

- The protective effect of isoniazid prophylaxis among Alaskan Eskimos is shown to persist for more than 19 years after INH was taken.
- Magnitude of effect related to amount of isoniazid taken.
- "The results of the study are consistent with the hypothesis that the decrease in risk of tuberculosis produced by isoniazid preventive therapy is lifelong"


Incidence of TB per 100 PY during and after INH treatment (HIV infected SA Gold miners) Churchyard et al, NEJM 2014

The Cascade of Care in LTBI a Health systems approach

Assuming we have the right tools to diagnose and treat Latent TB....

The Cascade of Care in Latent TB (Alsdurf, Menzies Lancet ID 2016)

Summary – Cascade of care review:

- Of all estimated to have LTBI: Less than 20% completed treatment
- Steps in the cascade with the greatest losses:
 - 28% of those eligible for screening did not complete initial testing for LTBI
 - 34% of those with positive LTBI test did not complete medical evaluation
 - 34% of those who completed the medical evaluation were not recommended to take LTBI therapy

Conclusions and Implications

- Losses before starting LTBI therapy result in much greater reduction in public health benefit than patient non-adherence to therapy after starting
- A comprehensive 'Cascade of Care' approach provides a Health Systems framework to scale up LTBI management
- Modeling impact of LTBI management must account for the Cascade of care: Losses and/or Costs/Complexity

Prevention of disease

AN ALTERNATIVE APPROACH (THINKING OUTSIDE THE BOX)

Prevention of TB without drugs or BCG: The Papworth experiment (1918-43) revisited (Anurag Bhargava, et al. Am J Resp Crit Care Med, 2014)

- A comprehensive experiment to alter life conditions of TB patients and their families
- At least one adult had active TB
 - Children lived with their parents. Monitored for TB
- Interventions included:
 - Better housing
 - Employment with adequiate wages
 - Nutrition
 - Careful monitoring
- BUT No TB drugs and no BCG

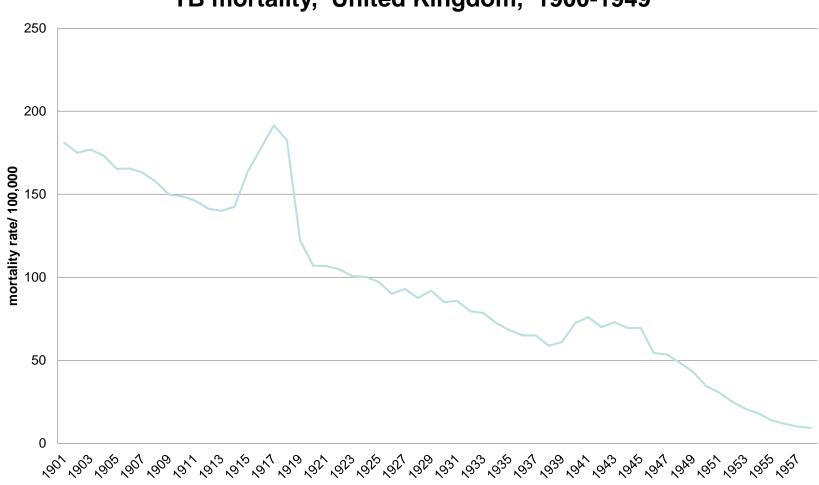
The Papworth experiment. **Study population and measurements**

Two cohorts of children:

Admitted Group - Born outside Papworth. Moved there with parents in childhood

- Number=228.
- Pre-Papworth occurrence of TB disease, Average 5 yrs
- Papworth occurrence of Infection and disease. 7 years

Papworth-born – Born after parents admitted to Papworth.


- Number = 84
- No Pre-Papworth of course
- Papworth infection and disease. Average 7 years

SUMMARY OF DISEASE IN THE TWO GROUPS

	Admitted	Papworth-born
pre-Papworth period	N = 231	N = 84
No. with disease	13	
Incidence rate/10 ⁵ PYAR	1512 (807, 2571)	
Papworth period	N = 218	N = 84
No. with disease	5	1
Incidence rate /10 ⁵ PYAR	235 (76, 547)	132 (3, 734)
Infection rate (per year)	20%	21%
Post-Papworth period	N = 34	N = 3
No. with disease	5	0
Incidence rate /10 ⁵ PYAR	2336 (763, 5638)	0 (0, 14818)

How often?

RESERVOIRS AND RESURGENCES

TB mortality, United Kingdom, 1900-1949

Reference: Office of National Statistics, UK, 2003

Trends in TB – Russian Federation

Trends in case notification 1970-1990 and projections to 2005 *Trends in the reported TB death rate*

Change in key parameters – Russian Federation and global averages

(from Oxlade et al, IJTLD, 2009)

Indicator		
	Mean change all Countries (N=165)	Russian Federation
Change in TB incidence rate (1990-2005) per 100,000	+37.5	+68.4
Change in Life expectancy (1990- 2005)	+2.4 yrs	-4 yrs
Change in Under 5 mortality(1990-2005) rate, per 1000	-16.6	-9
Change in measles immunization coverage (1990-2005)	+8.3%	No data
Percent Change in per capita GDP(1990- 2005)	+79.3%	+39%
HIV prevalence in 2005	2.2%	1.1%
Change in treatment success DOTS (1990-2005)	76.7%	58.5%

TB notification rates (per 100,000 population) from 1960 to 2014 in 6 Indigenous populations and the general population of Canada (Dehghani et al, Lancet PH 2018)

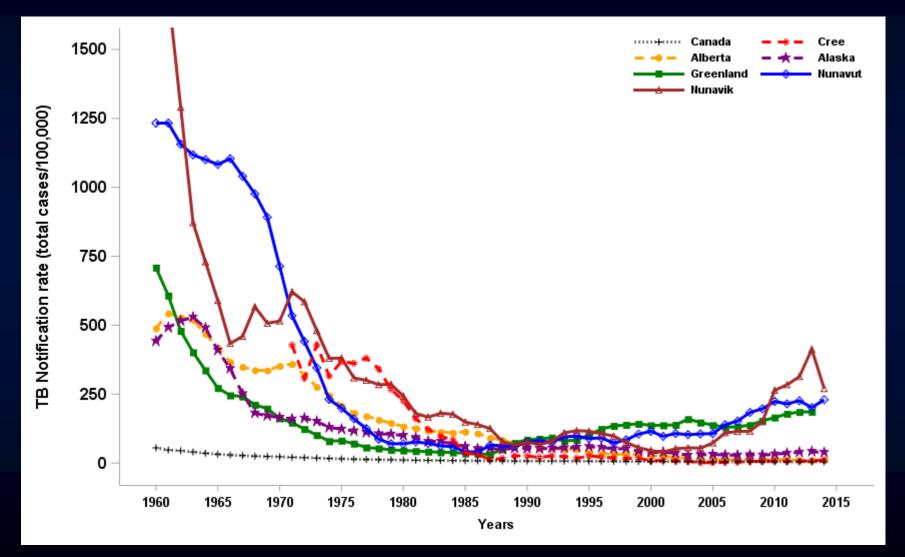
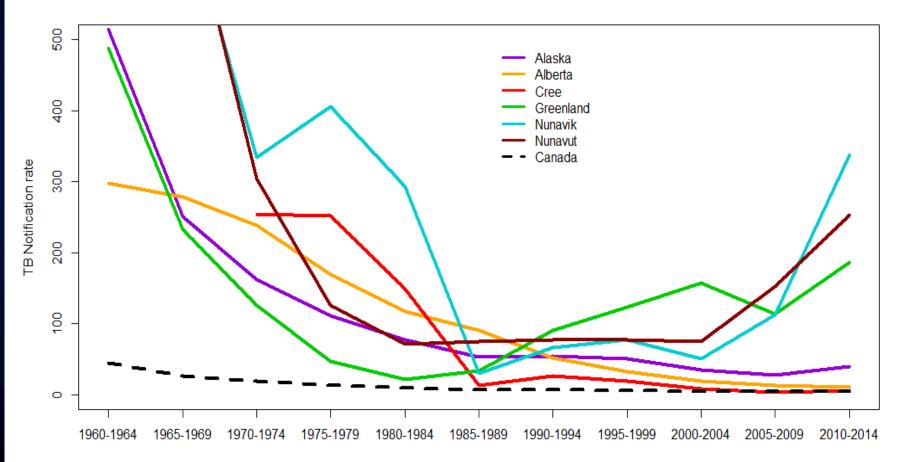



Figure 1b. *Magnified* view: TB notification rates in 6 Indigenous Populations of North America and Greenland and the Canadian general population from 1960 to 2014 (*Dehghani et al, Lancet PH 2018*)

Final thoughts: Modeling latent TB

Underlying determinants: Important, but how to change?

- Diagnosis: Poor predictive ability of current immune based tests
- Who to treat: Highest risk (individual benefit) vs highest population attributable fraction (Public health benefit)
- Treatment: **Forget about INH**. Rifamycin based regimens are effective, but still 3-4 months, and some risk.
- Re-infection: Important to consider, but in what populations?
- Cascade of care: treatment of LTBI requires broad health systems investment.
- Reservoirs & resurgence Resurgence happens (over and over) Do we really know why? **How to model what we do not understand?**