

Immunology of TB: insights from *in vivo* models and implications for prevention

Louis Joslyn
Dept of Bioinformatics

With Dr. Denise Kirschner and Dr. Jennifer Linderman

Lymph node Dendritic cell (DC) DC responds to pathogen signals and migrates to draining lymph nodes Macrophage Naive T cells are primed, Infection of macrophages and proliferate and become chemokine/cytokine (TNF) production effector T cells **Activation** Cytotoxic T cell (Tc) of M Killing of Infected M Φ Migration of T cells from **Pro-inflammatory** lymph nodes through T cell (Tγ) apoptosis circulation and chemoattraction to the lung tissue by inflammatory Lung Granuloma formation signals in the lung

In vivo model

Flynn Lab: Non-human primate model of tuberculosis

Cynomolgus macaque

+ M. tb

Erdman

10 cfu
via bronchoscope

100%

2-6 weeks

Tuberculin Skin Test +
Other immunologic tests +

6-8 months

LATENT TB (52%)

No signs of disease
CXR negative by 2 months
Mycobacterial culture
negative after 2 months
Clinical signs--none

ACTIVE TB (43%)

Positive Chest x-ray Mycobacterial culture

- + GA or BAL culture Clinical signs
 - weight loss,
 - appetite loss
 - •cough

Quantitative Cellular Data

For calibration and validation of models

- From granulomas at necropsy:
- Obtain data on cell types, cytokines, chemokines
- Across different granulomas at a specific time point

- Flow cytometry,
- Intracellular cytokine staining
- boolean gating,
- SPICE analysis

Spatial Data

PET/CT: Imaging modality for serial tracking of lesions and disease

SIEMENS

CT: structural map of lesions in organs

PET: functional map of lesions in organs

BSL3 imaging suite Regional Biocontainment Lab (RBL), Flynn Lab University of Pittsburgh

18F-FDG PET/CT imaging

Spatiotemporal Data

The challenge: Matching lesions from scan to lesions at necropsy

Spatial Quantification Data

Reactivation of latent infection by anti-TNF

Baseline (Latent)

2 months anti-TNF

How do we understand the spectrum of granulomas observed in primates?

Every granuloma is an island

Lin, Philana Ling, et al. *Nature* medicine 20.1 (2014): 75-79.

Understanding each granuloma individually can help distinguish infection outcomes

We believe that Granulomas are a result of multi-scale dynamics in both space & time

GranSim-our approach to modeling the immune response to TB

GranSim

Cellular/tissue scale Model--

A stochastic **model** that captures discrete cellular dynamics via a set of well-described interactions between immune cells and Mtb leading to tissue scale outcomes

**Leads to "emergent behavior"

^{*}Segovia-Juarez et al J. Theor Biol. 2004

^{*} Ray et al, J. Immunol. 2009

GranSim: granuloma developing over time

Containment Parameter Set - WT

50 days PI 100 days PI 150 days PI 200 days PI

*Gray hashed areas are caseous

Distributions and Gradients of TNF in a granuloma

8

.

...

H

GRANSIM matches quantitative Non-Human Primate CFU data

GRANSIM matches spatial Non-Human Primate data

Concluding thoughts: insights from *in vivo* models and implications for prevention

- Pairing experimental and computational:
 - can be a useful tool for identification of potential therapeutic targets at any biological scale
 - can better fine tune vaccine, drug, and biomarker discovery
 - can accelerate drug or treatment discovery

 In vitro and in vivo models can inform our in silico models, systems biology approach can streamline experimental protocols or clinical trials

How can we better integrate data and modeling?

- Systems Biology approach
 - Multiscale
- Development of methods which allow for better use of bioinformatics/sequencing data
- Machine Learning
- Choosing the right model for the right problem

Paul Wolberg

Dr. Simeone Marino

Joe Waliga

Joey Cicchese

Dr. Tim Wessler

Dr. Caitlin Hult

Dr. Marissa Renardy

Dr. Steph Evans

Past members

Dr. Mohammad

Fallhi-Sichani

Dr. Hayley Warsinske

Dr. Elsje Pienaar

Dr. Chang Gong

NIH funding

NHLBI and **NIAID**

Acknowledgments

- Collaborators: Jennifer Linderman, (Univ of Mich)
- Mark Miller (Washington University)
- •Joanne Flynn, Ling Lin, Josh Matilla, Hannah Gideon (Univ of Pitt)
- Steve Kunkel and Beth Moore (Univ of Mich)
- Veronique Dartois (Rutgers) and Tom Scriba (SATVI)