What happens to people in the absence of any intervention?

Modeling patient's care-seeking behavior

Hojoon Sohn

At last year's TB-MAC MRG meeting...

The pathway to promoting patient's well-being

Institute for Healthcare Improvement (IHI) Composite Model of Population Health – Stoto, 2014

Added complexity: An overview of delays in TB care pathway Dissecting causes of delays in diagnosis and treatment of TB

Health Systems Delay

Definition

Time between patient's first contact with the health system to treatment decisions for TB disease

Time components

- Pre-diagnostic delay
- Diagnostic delay
- Treatment delay

How have we have thus far 'modeled' the impact of patient care-seeking behavior

- Impact of symptom-related patient care-seeking behavior in the cost-effectiveness of active case-finding programs
- A case of decentralization of Xpert in India

Finding cases earlier:

Value and Cost-effectiveness of Active Case-Finding

Fig 1A – ACF Day algorithm

Conceptual model framework of symptom-associated care-seeking

Model Parameters and calibration

Model Parameters	
Population epidemiology	
Prevelance of TB in Cambodia yearly (660/100,000)	0.01
Incidence of Tb in Cambodia per year (437/100,000)	0.0044
Duration of disease	1.51
1/(prevelance/incidence)	0.66
Number of people enter with NoSx every year	662.12
Number of people enter with NoSx every round	55.18
number of TB+ people in model	1000.00
TB Epidemiology	
P (No Sx TB)	0.20
P (Mild Sx TB)	0.40
P (Strong Sx TB)	0.40
Programatic features	
P (diagnostic test PCF contact)	0.83
Sensitivity of diagnostic tests	0.85
P (Tx Positive Diagnosis) [CAT1] (p_LTC_PCF)	0.70
P (Tx Negative Diagnosis & No Sx) [Emp]	0.00
P (Tx Negative Diagnosis & Mild Sx) [Emp]	0.50
P (Tx Negative Diagnosis & Strong Sx) [Emp]	1.00
P(Cure Tx)	0.93
p (Cure NoTx & NoSx)	0.05
P (Death t+1 Strong Sx t)	0.02
Steps for the closed model calibration	
(1) 75% faster progression than regression of symptoms	
(2) # self cure and # death is equal	
(3) Duration of no Sx is 9mo	
Steps for the open model calibration	
(1) Calibrate P(PCF contact MildSx) and P(PCF contact Stro	ongSx) to
the extent entry & exit reach equal in numbers at equilibrium	1

Results

Madal Daramatar	Output					
	Cambodia	India				
Proportion of patients having passive contact with health system by symptom levels						
Asymptomatic	0	0				
Nonspecific	0.7	0.5				
Classic TB	0.14	1.0				
Monthly Symptom Transition Rate						
Non-specific to asymptomatic	0.120					
Non-specific to classic TB	0.158					
Asymptomatic to non-specific	0.210					
Classic TB to non-specific	0.090					

Clinical and Economic impact of ACF over time

Impact on the Cost-Effectiveness of ACF

Proportion of patients with classic symptoms who passively present to clinic every month (0 - 0.3)	\$1,532				\$9,011
TB prevalence in general population (0.002 - 0.01)		\$3,857			\$8,186
Ratio of Symptom Progression to Regression (0.5 - 2)		\$4,126			\$8,052
Proportion of TB-uninfected individuals who are asymptomatic (0.85 - 0.95)		\$3,841		\$6,473	
Proportion of ACF patients given SSM vs Xpert (0 - 1)		\$4,063	\$5	,414	
HIV prevalence (0.004 - 0.01)		\$3,666	\$4,692		
Proportion of PCF patients given Xpert vs SSM (0 - 1)		\$3,346			Low ValueHigh Value
SO	0 \$2,000	\$4,000	\$6,00	0 \$8,00	0 \$10,000
ICER (USD/ Death Averted)					

Decenetralized Xpert in India

All suspected TB patients (100%) will be tested with Xpert as an upfront test in both scenarios (smear as treatment monitoring tool)

- Decentralized: on the same day during the diagnostic visit
- Centralized: on the same week of the diagnostic visit (w/ added cost of sample transport network)

Conceptualization of care-seeking pathways

'Private – Public'

- a. Probability of seeking care modeled as a function of time since infection
- Probability seeking care via each provide depends on the previous step

Key impact of DXP

Is Xpert decentralization cost-effective?

* Possibly due to the 13% lost to follow-up who are never treated and continue to transmit the disease in both scenarios

Impact of parameters of patient care-seeking behavior

Post-calibration one-way sensitivity analyses of key parameters

Assessed as proportions of simulations falling below the ICER threshold of \sim \$1600

Conceptualization of how rapid diagnostics can reduce costs

Can we justify incremental cost of a diagnostic test? – A Reduced utilization of health services

But! This depends on how patients 'behave'

Within and outside of the health systems

Added complexity

Have rapid TB diagnostics had impact on reducing the delays?

- Screening 7,995 titles led to 39 eligible studies (21 for DS-TB w/ Xpert & 18 for DR-TB w/ LPA, where 2 were also for Xpert)
- Use of Xpert (vs. smear microscopy) reduced 2.83 days (95% CI: 0.09, 4.85) for diagnosis and 16.54 days* (95% CI 6.79, 26.35) for treatment for DS-TB

Exclusion of hypothetical studies reduced the effect to 4.75 days (95% CI 0.94, 8.57)

Culture DST) reduced 45.57 days (95% CI
How can a 2 hr. test end up delaying diagnosis and treatment for more than 40 days**?!
Adays (95% CI 27.72, 97.24) for DR-TB observed (types of study
** e.g. Hanrahan & Jacobson reported overall 55 and 60 days for treatment initiation of MDR-TB using LPA results

An

More complexities

- Social determinants of TB
- Equity issues
- Natural history of TB disease (biological and clinical considerations)
- Health systems operations and efficiencies in program implementation & scale-up
- Political willingness
- Patient's innate behavior (underlying constructs of patient characteristics associated with the disease, symptoms, and care-seeking)

???: How much of these do can we model in understanding the impact of new diagnostic tools (and other TB interventions) ???

Dowdy Team

- David Dowdy (Ass. Prof, Epi, IH, ID/SOM)
- Emily Kendall (Asst Prof, ID/SOM)
- Parastu Kasie (Research Assoc, HB)
- Hojoon Sohn (Post-Doctoral Fellow, Epi)
- Youngji Jo (Post-Doctoral Fellow, Epi)
- Karl Johnson (JHU Krieger School of Arts & Sciences)

Funding

- TB Modelling Analysis Consortium (TB-MAC)
- TB REACH Initiative Stop TB
- The Fonds de recherche du Québec Santé Post-Doctoral Fellowship Award

Thank you!

