

# Key considerations for incorporating heterogeneity into models of TB detection, transmission and intervention.

Sourya Shrestha, Johns Hopkins School of Public Health

TB MAC/WHO Task Force Annual Meeting Glion, Sep 21, 2017

## **Acknowledgements**

#### Contribution:

- David Dowdy & Parastu Kasaie (Hopkins)
- Violet Chihota & Gavin Churchyard (Aurum Institute)
- Alison Grant & Richard White (LSHTM)

#### Funding:

- Aeras Foundation
- Canadian Institutes for Health Research



### **Motivation**

TB is heterogenous — factors that drive (and/or are associated with) could be geographic, demographic, socio-economic, immunological/biological, etc.



OPEN ACCESS Freely available online

#### PLOS ONE

PLoS **on**e

#### Risk in India? Olivia Oxlade<sup>1</sup>, Megan Murraly prevalence (per 100,000) by Wealth Quintile



Tuberculosis and Poverty: Why Are the Poor at Greater

# Geography

David W. Dowdy<sup>a,b,1</sup>, Jonathan E. Golub<sup>a,b</sup>, Richard E. Chaisson<sup>a,b</sup>, and Valeria Saraceni<sup>c</sup>

Heterogeneity in tuberculosis transmission and the role

of geographic hotspots in propagating epidemics

The Journal of Infectious Diseases

MAJOR ARTICLE







#### Burden of New and Recurrent Tuberculosis in a Major South African City Stratified by Age and HIV-Status

Robin Wood<sup>1,2,3</sup>, Stephen D. Lawn<sup>1,2,4</sup>, Judy Caldwell<sup>5</sup>, Richard Kaplan<sup>1,2</sup>, Keren Middelkoop<sup>1,2</sup>, Linda-Gail Bekker<sup>1,2</sup>\*



Age Strata

#### Identifying Hotspots of Multidrug-Resistant Tuberculosis Transmission Using Spatial and Molecular Genetic Data

ı L. Zelner,¹ Megan B. Murray,² Mercedes C. Becerra,³ Jerome Galea,⁴ Leonid Lecca,⁴ Roger Calderon,⁴ Rosa Yataco,⁴ Carmen Contreras,⁴ Zibiao Zhang,<sup>5</sup> Justin Manjourides,<sup>6</sup> Bryan T. Grenfell,<sup>7,8</sup> and Ted Cohen<sup>9</sup>



# Motivation











#### **Motivation**

TB is heterogenous — factors that drive (and/or are associated with) could be geographic, demographic, socio-economic, immunological/biological, etc.

Targeted campaigns/interventions that leverage these heterogeneities could be relatively more effective in case detection/incidence reduction.



#### **Outline**

# Part I: Modeling Implications of Heterogeneity for TB/HIV interventions.

- Model conceptualization to captures levels of Heterogeneity in TB/HIV settings.
- Exploration of role of heterogeneity in TB/HIV interventions.

# Part II: Targeted TB vaccination in South African mining communities.

- Modeling South African mining communities.
- Comparing adult TB vaccination strategies.





Modeling Implications of Heterogeneity for TB/HIV interventions.



# High-TB, Low-HIV High-TB, High-HIV | Wood of the content of the c













#### **HIV** progression



- HIV increases the risk of TB disease
- Enhancement increases with decrease in CD4 counts



# Settings —

| Parameter Description                          | Canada | India | Kenya | South<br>Africa |
|------------------------------------------------|--------|-------|-------|-----------------|
| Calibration Targets <sup>†</sup>               |        |       |       |                 |
| TB incidence per 100,000 per year              | 5.2    | 167   | 246   | 834             |
| HIV prevalence per 100,000                     | 175    | 163   | 6,000 | 12,200          |
| HIV-TB incidence per 100,000 per year          | 0.29   | 8.3   | 89    | 509             |
| TB incidence prior to HIV epidemic per 100,000 | 12     | 500   | 250   | 500             |
| per year                                       |        |       |       |                 |
| ART coverage (%)                               | 43.4   | 40.2  | 55    | 31.2            |
| Female share of PLHIV (%)                      | 18.5   | 42.3  | 58.3  | 60.3            |



#### **Methods**





Model were calibrated to different levels of heterogeneity in TB and HIV in each setting.



## **Methods**

Risk Overlap: o = 0%

Risk Overlap: o =10%

Risk Overlap: o =50%

Risk Overlap: o =100%









.. across different levels of risk overlaps.

