How should diagnostics for incipient TB be utilized to reduce population-level transmission?

Bradley G. Wagner

TB MAC/WHO Annual Meeting Glion, Switzerland September 21st 2017

What do we need to know to quantify diagnostic impact on transmission?

- At the individual level, how does pathology correspond to transmissibility?
- At the population level, what is clinical vs subclinical contribution to transmission?
- Depends on:
 - Existing diagnostics (for TB, LTBI)
 - Health systems/access
 - Treatment success rates
 - Natural disease progression rates

 How does diagnostic sensitivity and specificity vary across pathology?

Drivers of transmission and diagnostic impact

- Trade-offs in modeling transmission:
 - Scenarios with greater contribution of subclinical TB will show greater impact of incipient TB diagnostic
- Infectiousness, prevalence of subclinical TB not well understood
- Subclinical TB prevalence can be characterized by:
 - Adding subclinical Dx (e.g., COR) to prevalence surveys

Example: Modeling COR Test

			Phase of M. tuberculosis infection	Support	Test					
					TST/IGRA	M. tuberculosis culture	COR signature (mRNA, 16-gene)	T-cell activation	Ag-specific CD8 T-cells	M/L ratio
Uisease progression	M. tuberculosis transmission	TB treatment	Active clinical TB disease	+	+	+	+	+	+	↑
			Subclinical TB disease	-	+	+	+	+	?	↑
				1-3	<u>.</u>		+	+/-	?	↑
			M. tuberculosis infection	1 - 2	+	-	=	=	=	¥
	M. tube transr	1	Cleared infection	-	+/-	-	-	-		\
			No infection	-			:	-	1-	¥

From Petruccioli et al. 2016

- Correlates of Risk (COR)
 - Blood based transcriptomic biomarker test
 - 6+ gene signature
 - Prognostic for activation with 2 years
 - Diagnostic for active TB
 - Improved sensitivity nearer to activation

Example: Modeling COR tests applied to all South Africa

Simulated parameter value sets across key programmatic, testing, and treatment uncertainties

	Model assumptions	Real-life premise		
Coverage / accessibility	Varied, whole pop (HIV+/-), all ages: 10%, 30%, 50%	Vaccination in 1-2 y.o.'s: 55% ¹		
Test frequency (COR)	Annual, random screening	CD4 monitoring in HIV+'s: 2x/yr		
Test sensitivity (COR)	Matches Zak et al: median, lower, upper bounds	Example: 66% (63-69%) <1 yr prior to active ²		
Linkage / adherence (3HP)	18% loss pre-treatment	18% (13-22%) in meta-analysis of Sub-Saharan Africa ³		
Cure rate (3HP)	Varied: 30%, 50%, 70%	30% based on modeling isoniazid study data ⁴		
Relative cure rate in HIV+ (3HP)	Varied: 50%, 80%	40% relative risk reduction in IPT-treated HIV+ TST- vs TST+5		
HIV prevalence / ART scale-up	Matches UNAIDS estimate	Example: 19% adult prev 2014		
Other health systems interventions for TB	Status quo for (Dx) symptom screen, TST, Xpert; (Rx) first-line drugs			

^{1.} South Africa DHS 2003

^{2.} Zak Lancet 2016

^{3.} MacPherson Bull. WHO 2013

^{4.} Sumner AIDS 2016

^{5.} Ayele PLOS One 2015

Model parameters: Initial care-seeking in South Africa

- High access (65% of pop)
 - Median delay: 3 months
- Low access (35% of pop)
 - Median delay: 10 months

COR (w/3HP) population-wide rollout in South Africa

- Epidemiological features: Rapid initial decline, slow steady decline, rebound after ending program
- Improvements in other indicators (such as prevalence of latent infection)
- Depending on coverage, burden declines nearly to 2025 Global Targets (---)
- However, no reasonable scenario completely eliminates rebound after program ends

COR/3HP: Test cost thresholds

- 20-year time horizon
- 3% annual discount rate
- 50% coverage

Assumes 95% test sensitivity

Putting novel diagnostics in context of the health system

Could novel diagnostics be bottlenecked by L0/L1 availability?

- **LO** Community health workers
- L1 Primary health centers
- **L2** District hospitals
- L3 Reference hospitals

Figure 1: Availability of tuberculosis diagnostic and treatment services across various health-care levels in 14 highest burden countries

From Huddart et al. 2016

Feasibility: Annual numbers tested

- Gated on high sensitivity specificity test for infection (comparable to IGRA)
- At 90% specificity
 - ~ 130,000 3HP treatments at 50% coverage

For context, in South Africa 2012, 9.2 x 10⁶ TB tests performed across all platforms

Balancing specificity and impact

ACS CORTIS by category

Time to TB Rx (days)

From Hatherill, Scriba, Penn-Nicholson, Suliman, Darboe, Kimbung et al. SATVI Ways to improve specificity?

- Multiple thresholds
 - (Investigation of) active disease
 - Preventative therapy
 - Follow up
- Targeting high-risk populations
 - e.g. HIV positive

Predicting diagnostic impact

Epidemiological impact in target populations will depend on:

- Current access to health care system
- Mechanism of deployment
 - Periodic (yearly) testing (POC)
 - Targeted campaigns
 - HIV clinics
 - Geographic targeting
- Linkage and adherence to treatment
 - How available is LTBI therapy at LO/L1 levels
 - Effectiveness of LTBI therapy (3HP vs 6H, 9H)

Predicting diagnostic impact

- Model of diagnostic rollout needs to reflect access mechanisms
 - Realistic bounds on coverage/epi impact
 - Opportunity costs
- Uncertainty in diagnostic impact depends on uncertainty in epidemic drivers
 - Heterogeneity in health-care access
 - Patient and health system delays
- Need to balance sensitivity and specificity in designing rollout