DATA CONSIDERATIOS FOR MODELS OF THE ECONOMICS OF CASE DETECTION

Presented by: Fiammetta Bozzani, Research Fellow in Health Economics

fiammetta.bozzani@lshtm.ac.uk

Study team: Tom Sumner, Don Mudzengi, Gabriela B. Gomez, Piotr Hippner, Salome Charalambous,

Richard White, Anna Vassall

TB-MAC meeting, Glion, 22nd September 2017

Improving health worldwide

www.lshtm.ac.uk

RACKGROUND

Two year project in close collaboration with the NDOH, institutionalised through the SA TB Think Tank

Focus on TB case finding:

- Previous modelling efforts (NSP) assumed no financial or non-financial constraints
- However, both types of constraints do exist in the South African health system
- Substantial uncertainty on how interventions would look like in practice (setting, target population, algorithm)
- Strategy choice affects consequential costs of TB diagnostics and treatment

Which TB screening interventions would be cost-effective placed in real-world of the South African health system?

CEPTUAL APPROACH — INCORPORATING CONSTRAINTS

- Constraints and/or the costs of 'relaxing' them are specific to each setting/intervention and must be identified and quantified to reflect real opportunity cost
- Our approach was designed to explore this issue with decision-makers (in a policy context) and as a proof of concept (feasibility)
- Three stages:
 - Examine cost-effectiveness assuming no constraints (unconstrained)
 - Examine cost-effectiveness considering real world constraints (constrained)
- incorporate the costs of relaxing those constraints (relaxing constraints)

CONCEPTUAL APPROACH — CHARACTERISING CONSTRAINTS

- Conceptual framework by Vassall and colleagues (2016) for adapting model-based evaluations to consider supplyside constraints
- 2. Constraints on TB services delivery in South Africa chosen from the literature and through discussions with NDOH

Constraints on TB services

Non-financial

Xpert
arbitrary, a priori
belief
proxim

HR
proximal, directly
restricting access

Financial

TB budget

artificial constraint due to allocation criteria other than cost-effectiveness (incremental budgeting or disease burden)

MITHODS

The interventions

- TB control interventions to reach the targets laid out in the South African NTP 2017-2021
- Our focus is on facility-based case detection
 - Screening algorithms: what questions to ask, to whom and how
 - Test negatives: strengthening follow-up algorithm for HIV-infected

The model

- NME transmission model investigating cost-effectiveness of NTP interventions between 2015-2035
 - Costs and staff minutes per service and number of Xperts attached to transmission model output to calculate financial and HR resource requirements under each scenario

MADELLED INTERVENTION SCENARIOS

Status quo

- •1. Continue current practice
- 80% Xpert coverage
- •14% follow-up of Xpert negatives (microscopy)
- •WHO symptoms screen in 40% of HIV+ clinic patients
- Passive screening of HIVpatients (8% of all PHC attendees report prolonged cough)

Intervention scenarios

Xpert

- •2. 100% Xpert coverage
- •3. 90% follow-up of Xpert negatives

Screening

- •5. Cough triage in 100% HIV+
- •6. Cough triage in 90% of all PHC patients
- •7. WHO symptoms screen in 100% HIV+
- •8. WHO symptoms screen in 90% of all PHC patients

Combination scenarios

- •Xpert
- •**4**. 2+3
- •Xpert + Screening
- **•9.** 4+6
- •**10.** 4+8

ELLED CONSTRAINED SCENARIOS

More restrictive

- Budget: current annual expenditure (adj. GDP growth)
- •HR: current annual minutes on TB (adj. population growth)

Medium

- •Budget: TB reprioritization of a static health budget during 2017-2021
- •HR: extra minutes allocated to TB during 2017-2021 to match disease burden
- Xpert: ratio of annual Xpert tests to TB notifications capped at 20

Least restrictive

- •Budget: TB
 reprioritization of a health
 budget that realizes full
 fiscal space during 20172021
- •HR: as for medium, but adjusting growth after 2021 based on historical workforce growth

REMAXING THE HR CONSTRAINT

- How many minutes are required to provide the extra services needed to achieve target coverage?
- Difference between unconstrained and HR constraint scenario
- 2. What is the cost of those extra minutes?
 - Extra minutes needed / annual minutes per nurse = extra nurses needed
 - Extra nurses in public sector:
 - New graduates: Training costs per nurse (from SANC)
 - Nurses witching from private sectors once jobs are created (salary is higher in public sector in South Africa)
 - Hiring costs (10% mark-up)
 - Nuse cost per minute: salary scales from NDOH

FAIRICAL ESTIMATION

Item		ta sources	
	of TB services (base case) and case- g interventions	Published literature Ongoing trials (XTE Primary data collect	END)
	minutes for delivering TB services and entions	Ongoing trials (ME	RGE)
• HR co	pacity (annual staff minutes available for	DHIS South African Nursi	ing Council
• TB bu	dget	NDOH expenditure Fiscal space analys	e reports sis (Remme et al. 2016)
• Xpert	MTB/RIF	Conditional grant k	oudgeting process

CONSTRAINTS' IMPACT ON TB INCIDENCE

- 1. Baseline
- 2. Increased Xpert utilisation
- 3. Adherence to Xpert negative algorithm
- 4.2 + 3
- 5. Cough triage in 100% of known HIV+ clinic attendees
- 6. Cough triage in 90% of PHC attendees
- 7. Symptom screen in 100% of known HIV+ clinic attendees
- 8. Symptom screen in 90% of PHC attendees
- 9.4 + 6
- 10.4 + 8

TOTAL COST PROJECTIONS COMPARED TO PANCIAL CONSTRAINTS

All intervention costs exceeded incremental budgeting however, if policy-makers accept a rapid increase in budget (influenced by disease burden) then interventions are potentially feasible

HIMAN RESOURCES CONSTRAINT

Unconstrained

Medium HR constraint

- 4. Xpert utilisation + Xpert negative algorithm
- Cough triage in 100% of known HIV+ clinic attendees
- 6. Cough triage in 90% of PHC attendees
- 7. Symptom screen in 100% of known HIV+ clinic attendees
- 8. Symptom screen in 90% of PHC attendees

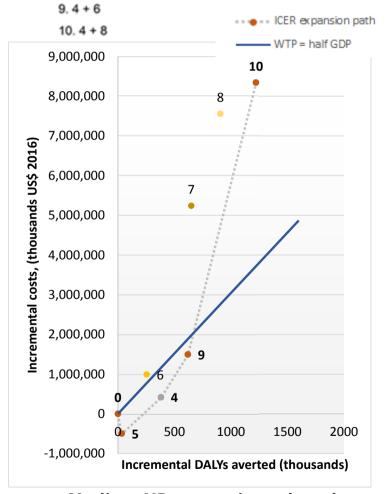
Medium HR constraint, relaxed

AN RESOURCES CONSTRAINT

2,000,000

1,500,000

1,000,000



Incremental costs, (thousands US\$ 2016) 500,000 10 600 200 400 -500,000 -1,000,000

Medium HR constraint

Incremental DALYs averted (thousands)

- 4. Xpert utilisation + Xpert negative algorithm
- Cough triage in 100% of known HIV+ clinic attendees
- Cough triage in 90% of PHC attendees
- 7. Symptom screen in 100% of known HIV+ clinic attendees
- 8. Symptom screen in 90% of PHC attendees

Medium HR constraint, relaxed

HIMAN RESOURCES CONSTRAINT

Unconstrained

Medium HR constraint

- 4. Xpert utilisation + Xpert negative algorithm
- Cough triage in 100% of known HIV+ clinic attendees
- 6. Cough triage in 90% of PHC attendees
- 7. Symptom screen in 100% of known HIV+ clinic attendees
- 8. Symptom screen in 90% of PHC attendees

Medium HR constraint, relaxed

LAN RESOURCES CONSTRAINT

2,000,000

1,500,000

1,000,000

500,000

Incremental costs, (thousands US\$ 2016) 010 600 200 400 -500,000 -1,000,000 Incremental DALYs averted (thousands)

Unconstrained

Medium HR constraint

- 4. Xpert utilisation + Xpert negative algorithm
- Cough triage in 100% of known HIV+ clinic attendees
- Cough triage in 90% of PHC attendees
- 7. Symptom screen in 100% of known HIV+ clinic attendees
- 8. Symptom screen in 90% of PHC attendees

Medium HR constraint, relaxed

MARY AND CONCLUSIONS

Illustrates that:

A) very effective interventions such as screening PHC patients using the WHO tool will remain unfunded without substantial reallocation (but tricky to achieve as reallocation means divestment)

B) allocating 15% of all of the current nurse time in SA to TB may be more cost-effective than current 9% (but likely to be infeasible)

riage with strengthening the diagnostic algorithm is still cost-effective (and potentially SA could deliver some other interventions)

FOR DISCUSSION

Data availability and quality for constraints estimation

We have assumed that existing TB control activities continue as currently, and only new ones are reduced to satisfy the constraints - In reality, if more coverage needed then existing activities would be reduced to compensate

This would require rules for prioritising activities

We have considered a single change in intervention coverage in each scenario over time

In eality, policies are dynamic and may be changed as capacity increases or decreases