Comparing case detection against other interventions in TB models

Rein Houben

London School of Hygiene and Tropical Medicine

Contents

- Why case finding?
- Outcomes for comparator
- Impact of False Positives
- Implications for modelling

Case finding – why the focus? 120,000.00 Gaps 100,000.00 80,000.00 60,000.00 Priority for funders / policy bodies 40,000.00 MODULE TYPE OF **INDICATOR** INDICATOR. **DESCRIPTION INDICATOR** CODE TB O-1a Case notification rate of all forms of TB per 100,000 population -Outcome Outcome indicators bacteriologically confirmed plus clinically diagnosed, new and relapse cases (All modules)

Source: GFATM funding model modular framework handbook (Feb 2017)

Case Finding - the alternatives

- Infection control
- Crowding
- Co-morbidities (Diabetes, HIV?,?)
- Continuous preventive therapy

Case Finding - the alternatives

- Manage co-morbidities (ART, Diabetes treatment)
- Nutrition
- Preventive therapy
 - HH contacts, Children, HIVpos

Case Finding

- Increase population coming forward for passive screening
 - Awareness, ...
- Targeted screening
 - Clinic attendees
 - Risk groups/communities

Case Finding

- Change screening test(s)
- Change confirmation test(s)
- At different service levels

Case Finding - the alternatives

- Interventions
 - Wide range of options available

How to compare

Outcome/Impact	Notes
Notifications	GFATM Outcome indicator
Cases treated	Actual target
Change in incidence	GFATM Impact indicator> Disease episodes prevented
Change in mortality	GFATM Impact indicator> Deaths prevented
DALYs averted	Guidance – principle 6
Cost/xyz	

<u>Implicit assumption notified cases >>> Epi-impact</u>

Notifications = cases found?

Notifications = cases found?

Notifications != cases found

Notifications != cases found

False positive results in modelling case finding

Scenario: expand current screening

- Baseline algorithm
 - 2wk cough, SSM/CD
- Algorithm 1:
 - Replace SSM/CD with Xpert
 - Increase in spec
- Algorithm 2:
 - Replace 2wk cough with any symptom
 - Increase in sens

Notifications vs Impact – country example

Problem escalates with declining prevalence in screening population

Prevalence of disease	% False Positive notifications	
	Any Symptom + SSM/CD Sens: 41% Spec: 94%	Any Symptom/Xray + Xpert Sens: 51% Spec: 99.4%
10,000/100,000 (passive screening)	56%	9%
1,000/100,000 (very high risk group)	93%	52%
500/100,000 (regular high risk groups)	97%	68%
150/100,000 (General population)	99%	87%

Impact of FP on potential comparators

Outcome/Impact	Change in indicator
Notifications	Increased
Cases treated	null
Change in incidence	null
Change in mortality	null
DALYs averted	null
Cost/xyz	Resource needs increased

Relevance for modelling

- False positives in TB are important have substantial and differential implications, depending on comparator used, modality/health system level, diagnostic algorithms considered
- Fraction FP likely higher in non-notified cases (e.g. private sector)
- Models comparing scenarios (case finding or other interventions) should recognise diagnostic structure and process
 - Menzies at al, 2012 PMED, Houben Lalli et al 2016,BMC MED, WHO risk group prioritisation tool
- Relatively speaking, evidence needed to capture process (easily) available
 - Prevalence of disease in screening population, diagnostic algorithm
 - Results of pilot projects investigate for % FP

Acknowledgements

Marek Lalli (LSHTM – TIME)

Funding

