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Introduction

This talk:

• Focus on interventions changing case detection
• Focus on epidemiological impact (& mainly transmission)
• Conceives of case detection as an emergent property of
patients, providers, and their interactions

I’m not speaking based on lots of experience! Some reflections
on unpacking detection in relation to health systems.
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Simple detection

I

death

L T

ν
σ δ

• death (ν), self-cure (σ), detection & treatment (δ)
• Probability of detection:

p =
δ

ν + σ + δ

• Without detection, 50% CFR & T = 3 year duration

→ ν = σ & (ν + σ) = T−1
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Simple detection

Howmight δ depend on more concrete quantities?

TB disease

On treat-
ment

δ

Model whole process from TB disease
to on treatment by an overall rate
(competing hazard), δ.
If all those starting treatment must be
diagnosed, this must be proportional
to the diagnostic sensitivity:

δ = frequency of diagnostic attempts

× sensitivity of diagnostic

Under a change in diagnostic
sensitivity:

δ → snew
sold

.δ

But…
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Simple detection

Care-seeking:

• Typical answer to question at clinic:
‘How long have you had symptoms?’
≈ 1 month

• Typical ratio prevalence/incidence ∼ duration
≈ 1 year

Ignoring the delay to care-seeking may over-estimate the
impact of passive (i.e. clinic-based) improvements to detection.
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Simple detection

Howmight δ depend on more concrete quantities?

not seeking
care

seeking
care

‘diagnosed’

On treat-
ment

δ0

δ1

δ2

• δ0 is a rate associated with
symptom progression.

• δ1 involves rate of care-seeking
and diagnostic sensitivity.

• δ2 is associated with the delay to
starting treatment.
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Smear status

I I+ I−

ρ ρ.s ρ.(1− s)

Force-of-infection (proportional to prevalence):

λ = β.
I
N

λ = β.
(I+ + f.I−)

N
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Model structure depends on question…
TECHNICAL ApPENDIX: 

MODELLING TB CONTROL UNDER DOTS 

MODEL 

The structure resembles that of previous state-transfer compartmental models (Waaler 
1968, Blower et a11995, 1996), especially those which include age-structure and 
allow for exogenous reinfection (Vynnycky 1996, Vynnycky & Fine 1997). But the 
new model has emerged from a fresh appraisal of the data (Fig. 1). Definitions of 
variables and transition parameters are in Table 1. 
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Figure 1. Flow diagram ofthe age-structured compartmental model for tuberculosis. 
Refer to Table 1 for definitions of variables and parameters, and to equations (1 )-(9) 
for a formal description of the model. 
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(a) Dye et al., 1998

Based on mathematical modelling, we argue that the
goal of eliminating TB by the mid-century is most likely
to be achieved if current treatment programmes can be

coupled with new approaches to reduce the vast
reservoir of latent human infection. This is not simply
a matter of achieving greater impact by adding one
intervention to another; rather, the coupling of control
methods exploits synergistic interactions between
interventions—synergies that have apparently not
been reported in previous studies of combined inter-
ventions (Blower et al. 1996; Murray & Salomon 1998).
The analysis offers a new perspective on the cost-
effectiveness of treating latent TB infection and throws
further light on the mechanism of action and impact of
potential new vaccines.

2. METHODS

2.1. Mathematical model of TB

We developed an age-structured mathematical model,
based on earlier TB models (Blower et al. 1996;
Vynnycky & Fine 1997; Dye et al. 1998), that describes
how people acquireM. tuberculosis infection, move into
the latent state and progress to active disease. The
natural history of TB is outlined in figure 2 and the
corresponding series of differential equations, pro-
grammed in BERKELEY MADONNA, is given in appendix A.
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Figure 1. TB epidemic trends in the world (black), sub-
Saharan Africa (red) and world excluding sub-Saharan Africa
(blue). Series are the estimated incidence rates per million
population per year, based on country case reports (World
Health Organization 2007). The TB incidence rate increased
by an annual average of 6% in Africa between 1990 and 2005,
but fell by 0.7% annually in the rest of the world.
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Figure 2. Flow chart of the TB model. Red lines show the direction of effective transmission; all groups are exposed to infection,
but there are significant aetiological, clinical or epidemiological consequences only for those people who are uninfected (U ) or
latently infected (Ls or Lf). Children and adults, for whom the natural history of TB is qualitatively similar but quantitatively
different, are distinguished in the model but not in this diagram. Green lines show the possible transitions due to vaccination and
drug treatment. Those who are successfully vaccinated are immunized for life. People are lost by death from all six groups, but
only TB deaths are shown.
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Sources and Analysis of Data. To calculate case reproduction
numbers, we have relied on epidemiological studies of DS-TB in
large populations (13). There have been significant outbreaks of

MDR-TB in institutions such as hospitals (14, 15) and prisons
(16) where the contact rate or susceptibility to disease, especially
in HIV-infected persons, could be greater. This analysis there-
fore is intended to apply to the general population, and our
criteria for containment may be insufficient to prevent outbreaks
in these special cases. Model parameter values are for adult (!15
years old) TB (ref. 11 and Table 1). The per capita contact rate,
c, was estimated to be 14 " 4 per year (ref. 13 and C. J. L.
Murray, unpublished data), and then adjusted for the fraction of
persons over 15 years of age in a typical highly endemic country
(i.e., India, 0.7). MDR strains probably generate fewer second-
ary infectious cases than do DS strains, because MDR-TB has
not become common without drug pressure whereas DS strains
have. There is direct evidence both from animal experiments
(17) and from epidemiological studies (18) that certain isoniazid-
resistant strains have lower relative fitness than do DS strains. No
such data exist for MDR strains, and any cost of resistance could
be small (19, 20) and temporary (21, 22). Based on refs. 18 and
20, we cautiously set modal cm # c, but giving relative fitness
cm!c range 0.7–1 in uncertainty and sensitivity analyses (see
Uncertainty and Sensitivity Analysis). Treatment success rates
reported from six countries are the fractions of cohorts of
patients whose sputum smears became negative for acid-fast
bacilli after 6–8 months of treatment, plus a small fraction who
completed treatment without a final smear examination (5).

Uncertainty and Sensitivity Analysis. We used Monte Carlo simu-
lation to calculate the probability that R!m $ 1, using 5,000
iterations for each of 24 % 21 combinations of case detection and
cure. R!m was calculated as described in the Appendix. Parameter
values were assumed to follow independent, triangular distribu-
tions with modes and lower and upper limits given in Table 1.
The same distributions were used to put bounds (5th and 95th
centiles) on estimates of R!m and in multivariate sensitivity
analysis.

Results
Best estimates of model parameters give R0m # 1.60 (5th and
95th centiles, 1.02 and 2.67, respectively) in the absence of
chemotherapy and when MDR-TB is invading a population
where 30% of the population already is infected with M.
tuberculosis. With a reproduction number of this magnitude,
MDR-TB incidence doubles every 5.3 years while the epidemic

Fig. 1. Flow chart of the mathematical model for MDR-TB. Each box repre-
sents a state variable of the model (see Methods). The population is followed
from the point at which infected and uninfected individuals join the adult
population. DS and DR refer to drug-susceptible and drug-resistant (but not
MDR) strains of M. tuberculosis, respectively. Individuals in all states may die
of causes unrelated to TB (data not shown). Infections leading to MDR-TB are
transmitted from new cases, I, and treatment failures, Fi.

Table 1. Definitions and values of model parameters and control variables

Parameter or
control variable Definition Lower Mode Upper

c Per capita contact rate, adjusted for age structure; subscript m denotes MDR 7.0 9.8 12.6
z Fraction of population infected with DS or DR strains 0.3 0.3 0.3
x Fraction of reinfected persons that develops MDR-TB at rate vf 0.1 0.35 0.6
p Fraction of newly infected persons that develops primary progressive MDR-TB 0.08 0.14 0.25
f Fraction of MDR-TB cases that is infectious 0.5 0.65 0.65
n Per capita rate at which infectious cases self-cure 0.15 0.2 0.25
rn Per capita rate of relapse to infectious MDR-TB after self-cure 0.02 0.03 0.04
" Per capita death rate from causes other than MDR-TB 0.015 0.015 0.015
"i Per capita death rate from untreated, MDR-TB; "if, for treatment failures, was

assumed to be 0.5 (range 0–1) of "i

0.2 0.3 0.4

# Fractional infectiousness of treatment failures 0 0.25 0.5
vf Per capita rate of breakdown to progressive primary MDR-TB 0.76 0.88 0.99
vs Per capita rate of breakdown to MDR-TB by endogenous reactivation 0.0001 0.00011 0.0003
d Per capita detection and treatment rate of new cases Variable
r Per capita detection and retreatment rate of failures; subscripts specify the

number of times treatment has failed
Variable

k Proportion of cases cured; subscripts as for r Variable

Rates are year(s)&1.

Dye and Williams PNAS " July 5, 2000 " vol. 97 " no. 14 " 8181
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Effect of case detection on tuberculosis incidenceDavid W Dowdy & Richard E Chaisson

one year to the next) with a CDR 
of 0%, which represents the period 
before e!ective TB treatment became 
available. TB case detection was then 
increased under two scenarios: (i) rapid 
expansion from 0% (absolute increase 
of 10% per year for up to 8 years), 
followed by stabilization at a constant 
CDR; and (ii) gradual expansion from 
0% over a prolonged period (absolute 
increase of 1% per year over 90 years). 
"e former scenario may more ac-
curately represent the “best possible” 
response to DOTS implementation, 
whereas the latter better ful#ls model 
assumptions of a steady state.35

"e model runs were performed 
in two hypothetical populations. "e 
#rst was assumed to be entirely HIV-
negative; the second was assumed to 
have a constant incidence of HIV infec-
tion su$cient to generate a stable 22% 
prevalence of such infection among 
incident TB cases (representative of 
the WHO African Region) at a TB 
CDR of 61%.27 HIV-infected and un-
infected individuals have di!erent rates 
of TB progression, reactivation, smear 
positivity and mortality (Table 1). For 
simplicity, we assumed only two HIV 
states, without further parameterization 
according to CD4+ cell counts and/or 
antiretroviral therapy status.

Definitions and case detection rate
"e TB CDR is actually a ratio de#ned 
as follows:

(number of diagnosed TB cases) / 
(number of total incident TB cases) 
× 100

By convention, we used “case detection 
rate” to denote the sputum smear-posi-
tive CDR; the sputum smear-negative 
CDR was calculated by assuming that 
diagnostic sensitivity for smear-negative 
TB was a constant fraction of the diag-
nostic sensitivity for smear-positive dis-
ease (Table 1). "e CDR is reported by 
WHO as the number of registered TB 
cases divided by an estimated denomi-
nator. "us, occasionally the result is an 
estimated CDR of > 100%.8 Because 
in the present model we measured inci-
dence directly, we were able to calculate 
the CDR exactly without an estimated 
denominator.

We de#ned a diagnostic attempt as 
any independent diagnostic e!ort by a 

Fig. 1. Compartmental difference-equation model of a TB epidemica

Susceptible

Rapid TB progression

Reinfection

Repeat
diagnostic
attempt

Latent infection

Reactivation/reinfection

Active TB,
undiagnosed

Active TB in
diagnosisb

Successfully treated

Active TB,
undiagnosed

Unsuccessfully treated

Reinfection/
relapse

Mortality from TB

TB, tuberculosis.
a  Compartments represent individuals with TB at different disease stages. The model was run both in the presence 

of and in the absence of HIV infection. Active TB compartments are also subdivided on the basis of sputum smear 
status. The dotted lines correspond to mortality from TB; non-TB mortality is experienced in all compartments. 
Although two boxes of undiagnosed active TB are shown here to illustrate repeat diagnostic attempts, they 
correspond to a single compartment in the model structure. 

b  Includes patients who have presented for diagnosis but have not yet completed two weeks of TB therapy.

health-care worker who can register and 
treat a patient with TB; such an attempt 
will often span multiple clinic visits. 
Diagnostic attempts may either result 
in appropriate diagnosis and initiation 
of TB treatment (“successful” attempt) 
or failure to diagnose TB (“unsuccess-
ful” attempt). "e diagnostic sensitivity, 
de#ned as the proportion of success-
ful diagnostic attempts, encompasses 
the physician’s index of suspicion for 
TB, the sensitivity of available labora-
tory techniques (e.g. sputum smear 
microscopy), and the losses to follow-
up before treatment initiation. Since 
patients with more severe disease (e.g. 
HIV-positive patients) are likely to pres-
ent for diagnosis more often than those 
with less severe disease, we de#ned the 
quantity r as the number of diagnostic 
attempts per death from TB. In the 
present model, we solved for the CDR 
numerically by varying the value of r in 
increments of 0.01.

Effect of case detection on 
TB incidence
To estimate the e!ect of changes in 
case detection on TB incidence, we cre-
ated decision points at six pre-de#ned 
levels of baseline case detection: 0%, 
20%, 40%, 60%, 70% and 80%. At 

each decision point, the CDR was im-
mediately stabilized and held constant 
for 10 years, and TB incidence was 
measured annually. For the scenario of 
gradual expansion in case detection, we 
also evaluated the e!ect of continuing 
to increase the TB CDR by 1% per year 
and of accelerating this to 2% per year. 
Finally, we considered the scenario in 
which the CDR increased immediately 
from 0% to 70% and remained con-
stant thereafter.

Model validation and uncertainty 
analysis
To verify that the baseline population 
provided reasonable estimates of TB 
incidence, we compared model output 
to the 2005 WHO estimates of TB 
burden in 22 high-burden countries.18 
Uncertainty analysis was performed 
by varying each parameter across the 
range speci#ed in Table 1 and stabilizing 
the CDR at 70% for 10 years. At the 
end of those 10 years we measured the 
per cent annual change in TB incidence 
between years 10 and 11. We also con-
sidered a “best-case” and “worst-case” 
scenario by setting all parameters to the 
values that gave the highest and lowest 
annual reduction in TB incidence at 
that time.

(d) Dowdy et al., 2009
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Case detection

Central problem:

Understand how concrete, detailed changes in health systems
translate into changes in case detection and epidemiological
impact.
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Heterogeneity in time

Natural history of infectiousness & care-seeking

Bad…
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Heterogeneity in time

Natural history of infectiousness & care-seeking

Better…
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Heterogeneity in type

Individual characteristics↔ care-seeking & infectiousness

• infectiousness (e.g. smear status, number of contacts)
• age
• sex
• TB treatment history
• comorbidity (e.g. HIV)
• location
• SES
• heterogeneity in time course by type…
• mixing between groups…

Understand proportion of transmission by type
& who the intervention will affect.
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Provider-side considerations

Factors relevant to patient interactions:

• private/public
• level of facility
• location
• referral pathways
• capacity/logistics
• delays
• provider behaviour (under intervention)
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Patient pathways

Table 4.2: Basic statistics of pathway features

N NoED, N (%) ED, Med (IQR) NoDD, N (%) Mis, N (%) Emp, N (%) DD, Med (IQR) TC, N (%)
Variable

All 7130 3529 (49%) 41 (13-91) 1370 (19%) 1185 (17%) 2660 (37%) 34 (14-85) 3785 (53%)
Age
 15 73 29 (40%) 38 (18-72) 21 (29%) 5 (7%) 24 (33%) 18 (8-43) 47 (64%)
> 15, < 65 3535 1840 (52%) 39 (12-80) 764 (22%) 375 (11%) 1474 (42%) 25 (12-59) 2111 (60%)
� 65 3522 1660 (47%) 45 (14-102) 585 (17%) 805 (23%) 1162 (33%) 47 (17-127) 1627 (46%)
TB history 4933 2612 (53%) 40 (13-87) 1028 (21%) 835 (17%) 1678 (34%) 38 (14-92) 2389 (48%)
Sex
Male 5021 2587 (52%) 42 (13-90) 1029 (20%) 844 (17%) 1828 (36%) 34 (14-91) 2611 (52%)
Female 2109 942 (45%) 39 (14-95) 341 (16%) 341 (16%) 832 (39%) 33 (14-76) 1174 (56%)
Employed
Yes 3558 1674 (47%) 42 (14-92) 626 (18%) 538 (15%) 1458 (41%) 31 (14-75) 2051 (58%)
No 3572 1855 (52%) 40 (13-90) 744 (21%) 647 (18%) 1202 (34%) 36 (14-98) 1734 (49%)
Other groups
Subsidised 211 120 (57%) 31 (8-91) 65 (31%) 45 (21%) 45 (21%) 50 (16-185) 75 (36%)
Sub-island 28 14 (50%) 76 (29-125) 2 (7%) 8 (29%) 10 (36%) 33 (12-205) 17 (61%)
Comorbidity
HIV 27 16 (59%) 19 (10-146) 11 (41%) 4 (15%) 4 (15%) 49 (27-106) 13 (48%)
DM 1117 568 (51%) 41 (13-83) 216 (19%) 141 (13%) 418 (37%) 34 (14-79) 587 (53%)
CLD 814 359 (44%) 45 (14-97) 137 (17%) 223 (27%) 243 (30%) 64 (21-171) 339 (42%)
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Figure 4.2: Frequency plot of evaluation patterns
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Figure: Chu-Chang Ku’s analysis of pre-tx pathways in Taiwan

• Interaction between patients and health system generates
often complex pathways

• A majority of relevant patient-system interactions are with
a minority of patients

• How do interventions influence these pathways & what
contribution do these pathways make to transmission?
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Figure: Chu-Chang Ku’s analysis of pre-tx pathways in Taiwan

• Interaction between patients and health system generates
often complex pathways

• A majority of relevant patient-system interactions are with
a minority of patients

• How do interventions influence these pathways & what
contribution do these pathways make to transmission?
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Nosocomial transmission

Figure: Singh JA, Upshur R, Padayatchi N (2007) XDR-TB in South
Africa: No Time for Denial or Complacency. PLoS Med 4(1): e50.
https://doi.org/10.1371/journal.pmed.0040050
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Technical challenges

Yes, many data challenges (covered elsewhere).

Additional challenges:

• Modelling health systems implies wanting to inform a
practical policy question in a particular setting.

• Many of the complex aspects aluded to above would
suggest use of an individual/agent-based model

→ Problematic, especially including transmission
(capacity, manageability,…)
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Technical challenges

Potential solutions:

• Computational approaches
• Easily-specifiable hybrid modelling framework
• Flexible approximation generation

• Model simplification
• Deriving adequate simplified model structures
& parameterizations

• Understanding when existing model (structures) are OK
& how to parametrize

This last has particular relevance to country-level modelling
using generic tools for GFATM applications etc.
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Conclusion

Some factors to consider:

• who interacts with which services and when
• relationship to likely contribution to transmission
• what those interactions look like: relevant to intervention?

• Behaviour
• patients
• providers
• changes in response to intervention

• potential for (changes in) nosocomial transmission

Data and implementation challenges require systematic
approach to simplification for a given setting &
intervention.
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