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Feasibility of achieving the 2025 WHO global tuberculosis 
targets in South Africa, China, and India: a combined analysis 
of 11 mathematical models
Rein M G J Houben, Nicolas A Menzies, Tom Sumner, Grace H Huynh, Nimalan Arinaminpathy, Jeremy D Goldhaber-Fiebert, Hsien-Ho Lin, 
Chieh-Yin Wu, Sandip Mandal, Surabhi Pandey, Sze-chuan Suen, Eran Bendavid, Andrew S Azman, David W Dowdy, Nicolas Bacaër, 
Allison S Rhines, Marcus W Feldman, Andreas Handel, Christopher C Whalen, Stewart T Chang, Bradley G Wagner, Philip A Eckhoff, James M Trauer, 
Justin T Denholm, Emma S McBryde, Ted Cohen, Joshua A Salomon, Carel Pretorius, Marek Lalli, Jeffrey W Eaton, Delia Boccia, Mehran Hosseini, 
Gabriela B Gomez, Suvanand Sahu, Colleen Daniels, Lucica Ditiu, Daniel P Chin, Lixia Wang, Vineet K Chadha, Kiran Rade, Puneet Dewan, 
Piotr Hippner, Salome Charalambous, Alison D Grant, Gavin Churchyard, Yogan Pillay, L David Mametja, Michael E Kimerling, Anna Vassall, 
Richard G White

Summary
Background The post-2015 End TB Strategy proposes targets of 50% reduction in tuberculosis incidence and 75% 
reduction in mortality from tuberculosis by 2025. We aimed to assess whether these targets are feasible in three 
high-burden countries with contrasting epidemiology and previous programmatic achievements.

Methods 11 independently developed mathematical models of tuberculosis transmission projected the epidemiological 
impact of currently available tuberculosis interventions for prevention, diagnosis, and treatment in China, India, and 
South Africa. Models were calibrated with data on tuberculosis incidence and mortality in 2012. Representatives from 
national tuberculosis programmes and the advocacy community provided distinct country-specific intervention 
scenarios, which included screening for symptoms, active case finding, and preventive therapy.

Findings Aggressive scale-up of any single intervention scenario could not achieve the post-2015 End TB Strategy 
targets in any country. However, the models projected that, in the South Africa national tuberculosis programme 
scenario, a combination of continuous isoniazid preventive therapy for individuals on antiretroviral therapy, expanded 
facility-based screening for symptoms of tuberculosis at health centres, and improved tuberculosis care could achieve 
a 55% reduction in incidence (range 31–62%) and a 72% reduction in mortality (range 64–82%) compared with 2015 
levels. For India, and particularly for China, full scale-up of all interventions in tuberculosis-programme performance 
fell short of the 2025 targets, despite preventing a cumulative 3·4 million cases. The advocacy scenarios illustrated the 
high impact of detecting and treating latent tuberculosis.

Interpretation Major reductions in tuberculosis burden seem possible with current interventions. However, additional 
interventions, adapted to country-specific tuberculosis epidemiology and health systems, are needed to reach the 
post-2015 End TB Strategy targets at country level.

Funding Bill and Melinda Gates Foundation 

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license.

Introduction
In May, 2014, the World Health Assembly approved the 
post-2015 End TB Strategy, setting “ambitious but 
feasible” targets for reducing the global burden of 
tuberculosis by 2035.1,2 The strategy is aiming for a 50% 
reduction in global tuberculosis incidence and a 75% 
reduction in global tuberculosis mortality by 2025, and 
90% and 95% reductions in these outcomes, respectively, 
by 2035.2 Policy makers must identify what interventions, 
and at which level of scale-up, will be needed to meet 
these targets at country level.

The End TB targets are deliberately ambitious, and any 
single intervention (defined here as a group of activities 
leading to an improvement in a specific area of tuberculosis 
control—eg, treatment outcomes) is unlikely to achieve 

these goals.3 Instead, national tuberculosis programmes 
will need improvements across the tuberculosis care 
pathway, together with preventive measures.

The End TB Strategy describes two phases of future 
efforts to control tuberculosis.2 In phase 1, the focus of 
this Article, progression towards the 2025 milestones 
will largely depend on optimising the use of existing 
tools, enabled by investments in universal health 
coverage and social protection.4 Post-2025 in phase 2, 
novel tools (diagnostics, drugs, and vaccines) are expected 
to enable further acceleration of tuberculosis decline 
towards the 2035 targets.1 For both phases of the End TB 
Strategy, policy makers require guidance about which 
interventions and technologies to use—questions that 
are unlikely to be answered by empirical studies, given 
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Cost-effectiveness and resource implications of aggressive 
action on tuberculosis in China, India, and South Africa: 
a combined analysis of nine models
Nicolas A Menzies, Gabriela B Gomez, Fiammetta Bozzani, Susmita Chatterjee, Nicola Foster, Ines Garcia Baena, Yoko V Laurence, Sun Qiang, 
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Justin T Denholm, David W Dowdy, Philip A Eckhoff, Jeremy D Goldhaber-Fiebert, Andreas Handel, Grace H Huynh, Marek Lalli, Hsien-Ho Lin, 
Sandip Mandal, Emma S McBryde, Surabhi Pandey, Joshua A Salomon, Sze-chuan Suen, Tom Sumner, James M Trauer, Bradley G Wagner, 
Christopher C Whalen, Chieh-Yin Wu, Delia Boccia, Vineet K Chadha, Salome Charalambous, Daniel P Chin, Gavin Churchyard, Colleen Daniels, 
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Summary
Background The post-2015 End TB Strategy sets global targets of reducing tuberculosis incidence by 50% and mortality 
by 75% by 2025. We aimed to assess resource requirements and cost-effectiveness of strategies to achieve these 
targets in China, India, and South Africa.

Methods We examined intervention scenarios developed in consultation with country stakeholders, which scaled up 
existing interventions to high but feasible coverage by 2025. Nine independent modelling groups collaborated to 
estimate policy outcomes, and we estimated the cost of each scenario by synthesising service use estimates, empirical 
cost data, and expert opinion on implementation strategies. We estimated health effects (ie, disability-adjusted life-
years averted) and resource implications for 2016–35, including patient-incurred costs. To assess resource 
requirements and cost-effectiveness, we compared scenarios with a base case representing continued current practice.

Findings Incremental tuberculosis service costs differed by scenario and country, and in some cases they more than 
doubled existing funding needs. In general, expansion of tuberculosis services substantially reduced patient-incurred 
costs and, in India and China, produced net cost savings for most interventions under a societal perspective. In all 
three countries, expansion of access to care produced substantial health gains. Compared with current practice and 
conventional cost-effectiveness thresholds, most intervention approaches seemed highly cost-effective.

Interpretation Expansion of tuberculosis services seems cost-effective for high-burden countries and could generate 
substantial health and economic benefits for patients, although substantial new funding would be required. Further 
work to determine the optimal intervention mix for each country is necessary. 

Funding Bill & Melinda Gates Foundation.
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Introduction 
The World Health Assembly’s post-2015 End TB 
Strategy formalises goals for aggressive action against 
tuber culosis, including reductions in global incidence 
by 50% and mortality by 75% by 2025.1 To meet these 
targets, major advances are needed in high-burden 
countries. The TB Modelling and Analysis Consortium 
conducted a multimodel evaluation to assess the goals’ 
feasibility,2 finding that aggressive but feasible scale-up 
of existing approaches could achieve the reductions 
described by the global targets in South Africa but not in 
India or China.

If targets can be met, understanding whether doing so 
represents the best use of funding or is even affordable is 
crucial. Conversely, if targets cannot be met, expansion 
of tuberculosis services is not without value. Although 
the End TB Strategy provides an important consensus to 

invigorate the fight against tuberculosis and attract 
funding, Ministries of Health also need to consider local 
priorities and programmatic constraints. In this context, 
an understanding of the resources required for scale-up 
and a comparison of the performance of competing 
intervention approaches are crucial. 

In this analysis, we aimed to describe the costs and 
health outcomes of aggressive intervention against 
tuberculosis, and to assess cost-effectiveness, financial 
implications, and patient economic burden of these 
interventions. Although previous studies3–5 have 
assessed the cost-effectiveness of various interventions 
in high-burden settings, few have compared multiple 
interventions simultaneously and assessed affordability. 
Quantification of the effect of these interventions on 
patient-incurred costs is also important, in view of the 
high disease burden in low-resource settings6,7 and the 
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Feasibility, diagnostic accuracy, and eff ectiveness of 
decentralised use of the Xpert MTB/RIF test for diagnosis 
of tuberculosis and multidrug resistance: a multicentre 
implementation study
Catharina C Boehme, Mark P Nicol, Pamela Nabeta, Joy S Michael, Eduardo Gotuzzo, Rasim Tahirli, Ma Tarcela Gler, Robert Blakemore, 
William Worodria, Christen Gray, Laurence Huang, Tatiana Caceres, Rafail Mehdiyev, Lawrence Raymond, Andrew Whitelaw, 
Kalaiselvan Sagadevan, Heather Alexander, Heidi Albert, Frank Cobelens, Helen Cox, David Alland, Mark D Perkins

Summary
Background The Xpert MTB/RIF test (Cepheid, Sunnyvale, CA, USA) can detect tuberculosis and its multidrug-
resistant form with very high sensitivity and specifi city in controlled studies, but no performance data exist from 
district and subdistrict health facilities in tuberculosis-endemic countries. We aimed to assess operational feasibility, 
accuracy, and eff ectiveness of implementation in such settings.

Methods We assessed adults (≥18 years) with suspected tuberculosis or multidrug-resistant tuberculosis consecutively 
presenting with cough lasting at least 2 weeks to urban health centres in South Africa, Peru, and India, drug-resistance 
screening facilities in Azerbaijan and the Philippines, and an emergency room in Uganda. Patients were excluded 
from the main analyses if their second sputum sample was collected more than 1 week after the fi rst sample, or if no 
valid reference standard or MTB/RIF test was available. We compared one-off  direct MTB/RIF testing in nine 
microscopy laboratories adjacent to study sites with 2–3 sputum smears and 1–3 cultures, dependent on site, and drug-
susceptibility testing. We assessed indicators of robustness including indeterminate rate and between-site performance, 
and compared time to detection, reporting, and treatment, and patient dropouts for the techniques used.

Findings We enrolled 6648 participants between Aug 11, 2009, and June 26, 2010. One-off  MTB/RIF testing detected 933 
(90·3%) of 1033 culture-confi rmed cases of tuberculosis, compared with 699 (67·1%) of 1041 for microscopy. MTB/RIF 
test sensitivity was 76·9% in smear-negative, culture-positive patients (296 of 385 samples), and 99·0% specifi c 
(2846 of 2876 non-tuberculosis samples). MTB/RIF test sensitivity for rifampicin resistance was 94·4% (236 of 250) 
and specifi city was 98·3% (796 of 810). Unlike microscopy, MTB/RIF test sensitivity was not signifi cantly lower in 
patients with HIV co-infection. Median time to detection of tuberculosis for the MTB/RIF test was 0 days (IQR 0–1), 
compared with 1 day (0–1) for microscopy, 30 days (23–43) for solid culture, and 16 days (13–21) for liquid culture. 
Median time to detection of resistance was 20 days (10–26) for line-probe assay and 106 days (30–124) for conventional 
drug-susceptibility testing. Use of the MTB/RIF test reduced median time to treatment for smear-negative tuberculosis 
from 56 days (39–81) to 5 days (2–8). The indeterminate rate of MTB/RIF testing was 2·4% (126 of 5321 samples) 
compared with 4·6% (441 of 9690) for cultures.

Interpretation The MTB/RIF test can eff ectively be used in low-resource settings to simplify patients’ access to early 
and accurate diagnosis, thereby potentially decreasing morbidity associated with diagnostic delay, dropout and 
mistreatment.

Funding Foundation for Innovative New Diagnostics, Bill & Melinda Gates Foundation, European and Developing 
Countries Clinical Trials Partnership (TA2007.40200.009), Wellcome Trust (085251/B/08/Z), and UK Department for 
International Development.

Introduction
Two of the three key infectious diseases of man, HIV and 
malaria, can be diagnosed in primary-care settings with 
straightforward rapid tests. No such technology has been 
available to accurately detect tuberculosis and its drug-
resistant forms, and this absence has been a major 
obstacle to improvement of tuberculosis care and 
reduction of the global burden of disease. Microscopy 
alone, although inexpensive, misses many patients and 
detects only those with relatively advanced disease.1–3 

Presently, only 28% of expected incident cases of 
tuberculosis are detected and reported as smear positive.4 
Undetected cases of disease increase morbidity, mortality, 
and disease transmission.5–7 In many countries, epidemic 
HIV infection has further reduced the sensitivity of 
microscopy and increased the necessity of rapid diagnosis 
of tuberculosis. The mortality of untreated or mistreated 
tuberculosis in people with advanced HIV is high.8–10 
Autopsy studies in various countries have shown that 
30–60% of people with HIV infection may die with 
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Background
Global control of tuberculosis is hampered by slow, insensitive diagnostic methods, 
particularly for the detection of drug-resistant forms and in patients with human im-
munodeficiency virus infection. Early detection is essential to reduce the death rate 
and interrupt transmission, but the complexity and infrastructure needs of sensitive 
methods limit their accessibility and effect.

Methods
We assessed the performance of Xpert MTB/RIF, an automated molecular test for 
Mycobacterium tuberculosis (MTB) and resistance to rifampin (RIF), with fully integrated 
sample processing in 1730 patients with suspected drug-sensitive or multidrug-resis-
tant pulmonary tuberculosis. Eligible patients in Peru, Azerbaijan, South Africa, and 
India provided three sputum specimens each. Two specimens were processed with 
N-acetyl-l-cysteine and sodium hydroxide before microscopy, solid and liquid culture, 
and the MTB/RIF test, and one specimen was used for direct testing with micros-
copy and the MTB/RIF test.

Results
Among culture-positive patients, a single, direct MTB/RIF test identified 551 of 561 
patients with smear-positive tuberculosis (98.2%) and 124 of 171 with smear-nega-
tive tuberculosis (72.5%). The test was specific in 604 of 609 patients without tu-
berculosis (99.2%). Among patients with smear-negative, culture-positive tubercu-
losis, the addition of a second MTB/RIF test increased sensitivity by 12.6 percentage 
points and a third by 5.1 percentage points, to a total of 90.2%. As compared with 
phenotypic drug-susceptibility testing, MTB/RIF testing correctly identified 200 of 
205 patients (97.6%) with rifampin-resistant bacteria and 504 of 514 (98.1%) with 
rifampin-sensitive bacteria. Sequencing resolved all but two cases in favor of the 
MTB/RIF assay.

Conclusions
The MTB/RIF test provided sensitive detection of tuberculosis and rifampin resis-
tance directly from untreated sputum in less than 2 hours with minimal hands-on 
time. (Funded by the Foundation for Innovative New Diagnostics.)
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Feasibility, diagnostic accuracy, and eff ectiveness of 
decentralised use of the Xpert MTB/RIF test for diagnosis 
of tuberculosis and multidrug resistance: a multicentre 
implementation study
Catharina C Boehme, Mark P Nicol, Pamela Nabeta, Joy S Michael, Eduardo Gotuzzo, Rasim Tahirli, Ma Tarcela Gler, Robert Blakemore, 
William Worodria, Christen Gray, Laurence Huang, Tatiana Caceres, Rafail Mehdiyev, Lawrence Raymond, Andrew Whitelaw, 
Kalaiselvan Sagadevan, Heather Alexander, Heidi Albert, Frank Cobelens, Helen Cox, David Alland, Mark D Perkins

Summary
Background The Xpert MTB/RIF test (Cepheid, Sunnyvale, CA, USA) can detect tuberculosis and its multidrug-
resistant form with very high sensitivity and specifi city in controlled studies, but no performance data exist from 
district and subdistrict health facilities in tuberculosis-endemic countries. We aimed to assess operational feasibility, 
accuracy, and eff ectiveness of implementation in such settings.

Methods We assessed adults (≥18 years) with suspected tuberculosis or multidrug-resistant tuberculosis consecutively 
presenting with cough lasting at least 2 weeks to urban health centres in South Africa, Peru, and India, drug-resistance 
screening facilities in Azerbaijan and the Philippines, and an emergency room in Uganda. Patients were excluded 
from the main analyses if their second sputum sample was collected more than 1 week after the fi rst sample, or if no 
valid reference standard or MTB/RIF test was available. We compared one-off  direct MTB/RIF testing in nine 
microscopy laboratories adjacent to study sites with 2–3 sputum smears and 1–3 cultures, dependent on site, and drug-
susceptibility testing. We assessed indicators of robustness including indeterminate rate and between-site performance, 
and compared time to detection, reporting, and treatment, and patient dropouts for the techniques used.

Findings We enrolled 6648 participants between Aug 11, 2009, and June 26, 2010. One-off  MTB/RIF testing detected 933 
(90·3%) of 1033 culture-confi rmed cases of tuberculosis, compared with 699 (67·1%) of 1041 for microscopy. MTB/RIF 
test sensitivity was 76·9% in smear-negative, culture-positive patients (296 of 385 samples), and 99·0% specifi c 
(2846 of 2876 non-tuberculosis samples). MTB/RIF test sensitivity for rifampicin resistance was 94·4% (236 of 250) 
and specifi city was 98·3% (796 of 810). Unlike microscopy, MTB/RIF test sensitivity was not signifi cantly lower in 
patients with HIV co-infection. Median time to detection of tuberculosis for the MTB/RIF test was 0 days (IQR 0–1), 
compared with 1 day (0–1) for microscopy, 30 days (23–43) for solid culture, and 16 days (13–21) for liquid culture. 
Median time to detection of resistance was 20 days (10–26) for line-probe assay and 106 days (30–124) for conventional 
drug-susceptibility testing. Use of the MTB/RIF test reduced median time to treatment for smear-negative tuberculosis 
from 56 days (39–81) to 5 days (2–8). The indeterminate rate of MTB/RIF testing was 2·4% (126 of 5321 samples) 
compared with 4·6% (441 of 9690) for cultures.

Interpretation The MTB/RIF test can eff ectively be used in low-resource settings to simplify patients’ access to early 
and accurate diagnosis, thereby potentially decreasing morbidity associated with diagnostic delay, dropout and 
mistreatment.

Funding Foundation for Innovative New Diagnostics, Bill & Melinda Gates Foundation, European and Developing 
Countries Clinical Trials Partnership (TA2007.40200.009), Wellcome Trust (085251/B/08/Z), and UK Department for 
International Development.

Introduction
Two of the three key infectious diseases of man, HIV and 
malaria, can be diagnosed in primary-care settings with 
straightforward rapid tests. No such technology has been 
available to accurately detect tuberculosis and its drug-
resistant forms, and this absence has been a major 
obstacle to improvement of tuberculosis care and 
reduction of the global burden of disease. Microscopy 
alone, although inexpensive, misses many patients and 
detects only those with relatively advanced disease.1–3 

Presently, only 28% of expected incident cases of 
tuberculosis are detected and reported as smear positive.4 
Undetected cases of disease increase morbidity, mortality, 
and disease transmission.5–7 In many countries, epidemic 
HIV infection has further reduced the sensitivity of 
microscopy and increased the necessity of rapid diagnosis 
of tuberculosis. The mortality of untreated or mistreated 
tuberculosis in people with advanced HIV is high.8–10 
Autopsy studies in various countries have shown that 
30–60% of people with HIV infection may die with 
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rifampicin resistance in adults (Review)
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Rapid Diagnosis of Tuberculosis with the Xpert MTB/RIF
Assay in High Burden Countries: A Cost-Effectiveness
Analysis
Anna Vassall1,2, Sanne van Kampen1, Hojoon Sohn3, Joy S. Michael4, K. R. John5, Saskia den Boon6,

J. Lucian Davis7, Andrew Whitelaw8,9, Mark P. Nicol8,9, Maria Tarcela Gler10, Anar Khaliqov11, Carlos

Zamudio12, Mark D. Perkins13, Catharina C. Boehme13, Frank Cobelens1*
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Abstract

Background: Xpert MTB/RIF (Xpert) is a promising new rapid diagnostic technology for tuberculosis (TB) that has
characteristics that suggest large-scale roll-out. However, because the test is expensive, there are concerns among TB
program managers and policy makers regarding its affordability for low- and middle-income settings.

Methods and Findings: We estimate the impact of the introduction of Xpert on the costs and cost-effectiveness of TB care
using decision analytic modelling, comparing the introduction of Xpert to a base case of smear microscopy and clinical
diagnosis in India, South Africa, and Uganda. The introduction of Xpert increases TB case finding in all three settings; from
72%–85% to 95%–99% of the cohort of individuals with suspected TB, compared to the base case. Diagnostic costs
(including the costs of testing all individuals with suspected TB) also increase: from US$28–US$49 to US$133–US$146 and
US$137–US$151 per TB case detected when Xpert is used ‘‘in addition to’’ and ‘‘as a replacement of’’ smear microscopy,
respectively. The incremental cost effectiveness ratios (ICERs) for using Xpert ‘‘in addition to’’ smear microscopy, compared
to the base case, range from US$41–$110 per disability adjusted life year (DALY) averted. Likewise the ICERS for using Xpert
‘‘as a replacement of’’ smear microscopy range from US$52–$138 per DALY averted. These ICERs are below the World Health
Organization (WHO) willingness to pay threshold.

Conclusions: Our results suggest that Xpert is a cost-effective method of TB diagnosis, compared to a base case of smear
microscopy and clinical diagnosis of smear-negative TB in low- and middle-income settings where, with its ability to
substantially increase case finding, it has important potential for improving TB diagnosis and control. The extent of cost-
effectiveness gain to TB programmes from deploying Xpert is primarily dependent on current TB diagnostic practices.
Further work is required during scale-up to validate these findings.

Please see later in the article for the Editors’ Summary.
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Abstract

Background: The Xpert MTB/RIF test enables rapid detection of tuberculosis (TB) and rifampicin resistance. The World
Health Organization recommends Xpert for initial diagnosis in individuals suspected of having multidrug-resistant TB (MDR-
TB) or HIV-associated TB, and many countries are moving quickly toward adopting Xpert. As roll-out proceeds, it is essential
to understand the potential health impact and cost-effectiveness of diagnostic strategies based on Xpert.

Methods and Findings: We evaluated potential health and economic consequences of implementing Xpert in five southern
African countries—Botswana, Lesotho, Namibia, South Africa, and Swaziland—where drug resistance and TB-HIV
coinfection are prevalent. Using a calibrated, dynamic mathematical model, we compared the status quo diagnostic
algorithm, emphasizing sputum smear, against an algorithm incorporating Xpert for initial diagnosis. Results were projected
over 10- and 20-y time periods starting from 2012. Compared to status quo, implementation of Xpert would avert 132,000
(95% CI: 55,000–284,000) TB cases and 182,000 (97,000–302,000) TB deaths in southern Africa over the 10 y following
introduction, and would reduce prevalence by 28% (14%–40%) by 2022, with more modest reductions in incidence. Health
system costs are projected to increase substantially with Xpert, by US$460 million (294–699 million) over 10 y. Antiretroviral
therapy for HIV represents a substantial fraction of these additional costs, because of improved survival in TB/HIV-infected
populations through better TB case-finding and treatment. Costs for treating MDR-TB are also expected to rise significantly
with Xpert scale-up. Relative to status quo, Xpert has an estimated cost-effectiveness of US$959 (633–1,485) per disability-
adjusted life-year averted over 10 y. Across countries, cost-effectiveness ratios ranged from US$792 (482–1,785) in Swaziland
to US$1,257 (767–2,276) in Botswana. Assessing outcomes over a 10-y period focuses on the near-term consequences of
Xpert adoption, but the cost-effectiveness results are conservative, with cost-effectiveness ratios assessed over a 20-y time
horizon approximately 20% lower than the 10-y values.

Conclusions: Introduction of Xpert could substantially change TB morbidity and mortality through improved case-finding
and treatment, with more limited impact on long-term transmission dynamics. Despite extant uncertainty about TB natural
history and intervention impact in southern Africa, adoption of Xpert evidently offers reasonable value for its cost, based on
conventional benchmarks for cost-effectiveness. However, the additional financial burden would be substantial, including
significant increases in costs for treating HIV and MDR-TB. Given the fundamental influence of HIV on TB dynamics and
intervention costs, care should be taken when interpreting the results of this analysis outside of settings with high HIV
prevalence.

Please see later in the article for the Editors’ Summary.
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Population Health Impact of Introducing Xpert
Introduction of Xpert is projected to produce immediate and

sustained changes in TB epidemiology (Figure 3). Within 10 y
after the introduction of Xpert, prevalence would be lower by 186
(95% CI: 86–350) per 100,000 (28% [95% CI: 14–40]), incidence
by 35 (13–79) per 100,000 (6% [2–13]), and annual TB mortality
by 50 (23–89) per 100,000 (21% [10–32]), compared to status quo
projections. The absolute number of MDR-TB cases after 10 y
would be lower by 25% (6–44) in the Xpert scenario compared to
the status quo scenario. The decline in MDR-TB cases parallels
the overall decline in TB prevalence in these projections. There is
no significant change expected in MDR-TB as a percentage of all
TB under the Xpert scenario (4.3% [217.5 to 34.6] greater after
10 y). Figure S2 shows the incremental differences between Xpert
and the status quo for these health outcomes, including
uncertainty intervals around these differences.

Summing the health effects of Xpert introduction over the first
10 y of implementation, this strategy is estimated to prevent
132,000 (95% CI: 55,000–284,000) of the estimated 2.6 million
(1.7–4.3 million) new TB cases and 182,000 (97,000–302,000) of
the estimated 1.2 million (0.6–2.0 million) TB deaths projected for
southern Africa under the status quo.

Health System Costs of Introducing Xpert
Figure 4 shows the additional annual costs associated with the

Xpert scenario compared to the status quo, subdivided by type of
cost. TB program costs rise rapidly as Xpert scales up to full
coverage over 2012–2015. While implementation of Xpert
requires increased spending on TB diagnosis and treatment, the
major financial impact of Xpert introduction in this region is on
HIV treatment programs. This is because prompt TB treatment
extends survival among TB/HIV-coinfected individuals, leading

Figure 3. Epidemiologic outcomes in Xpert and status quo scenarios, 2012–2032.
doi:10.1371/journal.pmed.1001347.g003
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Feasibility, accuracy, and clinical eff ect of point-of-care Xpert 
MTB/RIF testing for tuberculosis in primary-care settings in 
Africa: a multicentre, randomised, controlled trial
Grant Theron, Lynn Zijenah, Duncan Chanda, Petra Clowes, Andrea Rachow, Maia Lesosky, Wilbert Bara, Stanley Mungofa, Madhukar Pai, 
Michael Hoelscher, David Dowdy, Alex Pym, Peter Mwaba, Peter Mason, Jonny Peter, Keertan Dheda, for the TB-NEAT team*

Summary
Background The Xpert MTB/RIF test for tuberculosis is being rolled out in many countries, but evidence is lacking 
regarding its implementation outside laboratories, ability to inform same-day treatment decisions at the point of care, 
and clinical eff ect on tuberculosis-related morbidity. We aimed to assess the feasibility, accuracy, and clinical eff ect of 
point-of-care Xpert MTB/RIF testing at primary-care health-care facilities in southern Africa.

Methods In this pragmatic, randomised, parallel-group, multicentre trial, we recruited adults with symptoms suggestive 
of active tuberculosis from fi ve primary-care health-care facilities in South Africa, Zimbabwe, Zambia, and Tanzania. 
Eligible patients were randomly assigned using pregenerated tables to nurse-performed Xpert MTB/RIF at the clinic or 
sputum smear microscopy. Participants with a negative test result were empirically managed according to local WHO-
compliant guidelines. Our primary outcome was tuberculosis-related morbidity (measured with the TBscore and 
Karnofsky performance score [KPS]) in culture-positive patients who had begun anti-tuberculosis treatment, measured 
at 2 months and 6 months after randomisation, analysed by intention to treat. This trial is registered with Clinicaltrials.
gov, number NCT01554384.

Findings Between April 12, 2011, and March 30, 2012, we randomly assigned 758 patients to smear microscopy 
(182 culture positive) and 744 to Xpert MTB/RIF (185 culture positive). Median TBscore in culture-positive patients did 
not diff er between groups at 2 months (2 [IQR 0–3] in the smear microscopy group vs 2 [0·25–3] in the MTB/RIF 
group; p=0·85) or 6 months (1 [0–3] vs 1 [0–3]; p=0·35), nor did median KPS at 2 months (80 [70–90] vs 90 [80–90]; 
p=0·23) or 6 months (100 [90–100] vs 100 [90–100]; p=0·85). Point-of-care MTB/RIF had higher sensitivity than 
microscopy (154 [83%] of 185 vs 91 [50%] of 182; p=0·0001) but similar specifi city (517 [95%] 544 vs 540 [96%] of 560; 
p=0·25), and had similar sensitivity to laboratory-based MTB/RIF (292 [83%] of 351; p=0·99) but higher specifi city 
(952 [92%] of 1037; p=0·0173). 34 (5%) of 744 tests with point-of-care MTB/RIF and 82 (6%) of 1411 with laboratory-
based MTB/RIF failed (p=0·22). Compared with the microscopy group, more patients in the MTB/RIF group had a 
same-day diagnosis (178 [24%] of 744 vs 99 [13%] of 758; p<0·0001) and same-day treatment initiation (168 [23%] of 
744 vs 115 [15%] of 758; p=0·0002). Although, by end of the study, more culture-positive patients in the MTB/RIF group 
were on treatment due to reduced dropout (15 [8%] of 185 in the MTB/RIF group did not receive treatment vs 28 [15%] 
of 182 in the microscopy group; p=0·0302), the proportions of all patients on treatment in each group by day 56 were 
similar (320 [43%] of 744 in the MTB/RIF group vs 317 [42%] of 758 in the microscopy group; p=0·6408).

Interpretation Xpert MTB/RIF can be accurately administered by a nurse in primary-care clinics, resulting in more 
patients starting same-day treatment, more culture-positive patients starting therapy, and a shorter time to treatment. 
However, the benefi ts did not translate into lower tuberculosis-related morbidity, partly because of high levels of 
empirical-evidence-based treatment in smear-negative patients.

Funding European and Developing Countries Clinical Trials Partnership, National Research Foundation, and Claude 
Leon Foundation.

Introduction
A reversal in the incidence of tuberculosis is a key 
component of the UN Millennium Development Goals 
for 2015.1 Although substantial progress has been made 
worldwide,2 tuberculosis remains a major cause of 
morbidity and mortality in sub-Saharan Africa,3 and 
several high-burden countries are not on track to 
substantively reduce their burden of tuberculosis.4 Smear 
microscopy, which is often done in primary-care clinics 
in such settings, is frequently used for the diagnosis of 

tuberculosis, and it can rapidly aff ect treatment decisions. 
However, it misses 40–60% of cases, and does least well 
in people with advanced immunosuppression.5 Tests that 
are rapid, accurate, and deployable at the point of care are 
projected to substantially reduce tuberculosis-related 
morbidity and mortality,6,7 although empirical evidence is 
in very short supply.

The Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA, 
USA) is a US Food and Drug Administration-approved, 
automated nucleic-acid amplifi cation test that can detect 
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What Happens After a Negative Test for Tuberculosis?
Evaluating Adherence to TB Diagnostic Algorithms

in South African Primary Health Clinics

K. M. McCarthy, MD,*† A. D. Grant, PhD,†‡ V. Chihota, PhD,*† S. Ginindza, MSc,*
L. Mvusi, MD,§ G. J. Churchyard, PhD,*†‡ and K.L. Fielding, PhD‡

Introduction and Background: Diagnostic tests for tuberculo-
sis (TB) using sputum have suboptimal sensitivity among
HIV-positive persons. We assessed health care worker adherence
to TB diagnostic algorithms after negative sputum test results.

Methods: The XTEND (Xpert for TB—Evaluating a New Diag-
nostic) trial compared outcomes among people tested for TB in
primary care clinics using Xpert MTB/RIF vs. smear microscopy as
the initial test. We analyzed data from XTEND participants who were
HIV positive or HIV status unknown, whose initial sputum Xpert
MTB/RIF or microscopy result was negative. If chest radiography,
sputum culture, or hospital referral took place, the algorithm for TB
diagnosis was considered followed. Analysis of intervention (Xpert
MTB/RIF) effect on algorithm adherence used methods for cluster-
randomized trials with small number of clusters.

Results: Among 4037 XTEND participants with initial negative test
results, 2155 (53%) reported being or testing HIV positive and 540
(14%) had unknown HIV status. Among 2155 HIV-positive partic-
ipants [684 (32%) male, mean age 37 years (range, 18–79 years)],
there was evidence of algorithm adherence among 515 (24%).
Adherence was less likely among persons tested initially with Xpert
MTB/RIF vs. smear [14% (142/1031) vs. 32% (364/1122), adjusted
risk ratio 0.34 (95% CI: 0.17 to 0.65)] and for participants with
unknown vs. positive HIV status [59/540 (11%) vs. 507/2155 (24%)].

Conclusions: We observed poorer adherence to TB diagnostic
algorithms among HIV-positive persons tested initially with Xpert
MTB/RIF vs. microscopy. Poor adherence to TB diagnostic
algorithms and incomplete coverage of HIV testing represents
a missed opportunity to diagnose TB and HIV, and may contribute
to TB mortality.

Key Words: Tuberculosis, TB/HIV integration, TB diagnosis, Xpert
MTB/RIF, mortality, XTEND

(J Acquir Immune Defic Syndr 2016;71:e119–e126)

INTRODUCTION
The South African tuberculosis (TB) epidemic is one

of the largest in the world, with an estimated incidence of
860 (776–980) cases per 100,000 general population1 in
2013. TB is the leading cause of death among HIV-positive
South Africans.2–4 In this context, prompt diagnosis and
early initiation of TB treatment may save lives. The
diagnosis of TB has been hampered by the poor diagnostic
sensitivity of smear microscopy, especially among HIV-
positive people.5 On the basis of improved sensitivity
compared with smear microscopy,6 the GeneXpert platform
for the diagnosis of TB (Xpert MTB/RIF) was endorsed by
the World Health Organization (WHO) as the initial test for
TB diagnosis among HIV-positive people being investi-
gated for TB,7 as a conditional recommendation, and
subject to resource availability.

The South African National Health Laboratory Service
(NHLS), which provides TB sputum testing for more than
4000 primary health clinics (PHC), rolled out Xpert MTB/RIF,
replacing smear microscopy, as the initial test for TB between
2011 and 2013. The Xpert MTB/RIF roll-out was accompanied
by a new diagnostic algorithm for TB diagnosis (Fig. 1A).8 As
Xpert MTB/RIF is less sensitive than culture, it will miss cases
of TB where the bacterial burden in sputum is lower than the
threshold of detection of c.50–150 colony-forming units (cfu)/
mL.9 The new algorithm therefore advises further investiga-
tions for HIV-positive people whose initial sputum Xpert
MTB/RIF result is negative.10 The algorithm requires sub-
mission of a second sputum specimen for TB culture (followed
by line probe assay or drug susceptibility testing), chest
radiograph (CXR), and a trial of broad-spectrum antibiotics.
These additional tests are appropriate among persons living
with HIV who present with pulmonary symptoms, as the
bacterial burden of TB in sputum is more likely to be low.11

Furthermore, persons living with HIV are more likely to have
TB, and it is appropriate to investigate more intensively.12

In an evaluation of Xpert MTB/RIF vs. smear micros-
copy for the diagnosis of TB (the XTEND trial, described
below),13 we demonstrated no reduction in mortality among
persons tested initially with Xpert MTB/RIF.13 In this
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Xpert MTB/RIF versus sputum microscopy as the initial 
diagnostic test for tuberculosis: a cluster-randomised trial 
embedded in South African roll-out of Xpert MTB/RIF
Gavin J Churchyard, Wendy S Stevens, Lerole D Mametja, Kerrigan M McCarthy, Violet Chihota, Mark P Nicol, Linda K Erasmus, Norbert O Ndjeka, 
Lindiwe Mvusi, Anna Vassall, Edina Sinanovic, Helen S Cox, Christopher Dye, Alison D Grant, Katherine L Fielding

Summary
Background In South Africa, sputum smear microscopy has been replaced with Xpert MTB/RIF as the initial 
diagnostic test for tuberculosis. In a pragmatic parallel cluster-randomised trial, we evaluated the eff ect on patient and 
programme outcomes.

Methods We randomly allocated 20 laboratories (clusters) in medium-burden districts of South Africa to either an Xpert 
(immediate Xpert) or microscopy (Xpert deferred) group (1:1), stratifi ed by province. At two primary care clinics per 
laboratory, a systematic sample of adults giving sputum for tuberculosis investigation was assessed for eligibility. The 
primary outcome was mortality at 6 months from enrolment. Masking of participants’ group allocation was not possible 
because of the pragmatic trial design. The trial is registered with the ISRCTN registry (ISRCTN68905568) and the 
South African Clinical Trial Register (DOH-27-1011-3849).

Findings Between June and November, 2012, 4972 people were screened, and 4656 (93·6%) enrolled (median age 
36 years; 2891 [62%] female; 2212 [62%] reported being HIV-positive). There was no diff erence between the Xpert and 
microscopy groups with respect to mortality at 6 months (91/2324 [3·9%] vs 116/2332 [5·0%], respectively; adjusted 
risk ratio [aRR] 1·10, 95% CI 0·75–1·62]).

Interpretation Xpert did not reduce mortality at 6 months compared with sputum microscopy. Improving outcomes in 
drug-sensitive tuberculosis programmes might require not only better diagnostic tests but also better linkage to care.

Funding Bill & Melinda Gates Foundation.

Copyright © Churchyard et al. Open Access article distributed under the terms of CC BY-NC-ND.

Introduction
Improved diagnosis of tuberculosis is a global priority for 
tuberculosis control. Xpert MTB/RIF (Cepheid, Sunnyvale, 
CA, USA) is a rapid, molecular, cartridge-based test that 
represents an important advance in tuber culosis diag-
nostics, with consistently better sensitivity than sputum 
smear microscopy, and an immediate rifampicin resistance 
result.1–3 The 2013 WHO guidelines include a conditional 
recommendation for Xpert MTB/RIF as the initial 
diagnostic test in all adults with suspected tuber culosis, 
acknowledging resource implications.4 The impact of 
Xpert MTB/RIF will, however, depend on the system in 
which it is used5,6 and countries will need evidence about 
patient, programme, and cost-eff ectiveness outcomes to 
inform policy recommendations for programmatic imple-
men tation of the test in their settings.7

In 2011, South Africa, with the third largest number of 
tuberculosis cases globally, made a policy decision to 
replace sputum smear microscopy with Xpert MTB/RIF 
as the fi rst-line test for tuberculosis across the entire 
national laboratory service.8 The South African Xpert 
MTB/RIF programme is the largest in the world, 
accounting for more than half of all cartridges procured 
globally in 2013.

Here, we use a pragmatic cluster-randomised trial 
embedded in the South African national roll-out of Xpert 
MTB/RIF to assess the eff ect of Xpert MTB/RIF use 
versus sputum smear microscopy use on mortality, 
proportion test positive, proportion treated and the initial 
loss to follow-up in people being investigated for 
tuberculosis”

Methods
Study design
The XTEND study was a pragmatic, two-arm, parallel, 
cluster-randomised trial to assess the eff ect of Xpert 
MTB/RIF implementation in South Africa. A cluster was 
defi ned as a laboratory and two primary care clinics served 
by, but not co-located with, that laboratory. Further details 
of how clinics and laboratories were selected is in the 
appendix.

The XTEND protocol was approved by the ethics 
committees of the University of the Witwatersrand; the 
University of Cape Town; the London School of Hygiene 
& Tropical Medicine; and WHO. The study protocol is 
available online. The study is registered with the 
ISRCTN trials register (ISRCTN68905568) and the 
South African Clinical Trials Register (DOH-27-1011-
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Personal View

Do high rates of empirical treatment undermine the 
potential eff ect of new diagnostic tests for tuberculosis in 
high-burden settings?
Grant Theron, Jonny Peter, David Dowdy, Ivor Langley, S Bertel Squire, Keertan Dheda

In tuberculosis-endemic settings, patients are often treated empirically, meaning that they are placed on treatment 
based on clinical symptoms or tests that do not provide a microbiological diagnosis (eg, chest radiography). New tests 
for tuberculosis, such as the Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA, USA), are being implemented at 
substantial cost. To inform policy and rationally drive implementation, data are needed for how these tests aff ect 
morbidity, mortality, transmission, and population-level tuberculosis burden. If people diagnosed by use of new 
diagnostics would have received empirical treatment a few days later anyway, then the incremental benefi t might be 
small. Will new diagnostics substantially improve outcomes and disease burden, or simply displace empirical 
treatment? Will the extent and accuracy of empirical treatment change with the introduction of a new test? In this 
Personal View, we review emerging data for how empirical treatment is frequently same-day, and might still be the 
predominant form of treatment in high-burden settings, even after Xpert implementation; and how Xpert might 
displace so-called true-positive, rather than false-positive, empirical treatment. We suggest types of studies needed to 
accurately assess the eff ect of new tuberculosis tests and the role of empirical treatment in real-world settings. Until 
such questions can be addressed, and empirical treatment is appropriately characterised, we postulate that the 
estimated population-level eff ect of new tests such as Xpert might be substantially overestimated.

Introduction
Although several factors, including reduction of poverty 
and improved access to treatment, are crucial to reduce 
the global burden of tuberculosis, accurate and rapid 
diagnostic tests are a major unmet need. Xpert 
MTB/RIF—an automated real-time PCR platform for 
diagnosis of tuberculosis and detection of rifampicin 
resistance—is endorsed by WHO1,2 and the USA Food 
and Drug Administration and is undergoing imple-
mentation in several high-burden countries.3 Xpert is 
usable at the point-of-care4,5 and can detect about two-
thirds of smear-negative tuberculosis cases in less than 
2 h.6 The widespread implementation of Xpert will need 
substantial investment by international donors and 
governments of resource-poor countries.7

Modelling studies have indicated that accurate and 
potentially same-day tuberculosis diagnostics could 
reduce mortality by 20–35% by enabling earlier initiation 
of tuberculosis treatment.8 However, in HIV-endemic 
settings with a high tuberculosis-related mortality, 
clinicians compensate for the shortcomings of smear 
microscopy (frequently the only routinely available 
tuberculosis test) with the initiation of treatment on the 
basis of clinical symptoms, less specifi c tests (such as 
chest radiography), or absence of a response to broad-
spectrum antibiotics.9,10 The initiation of treatment in the 
absence of a bacteriologically confi rmed diagnosis is 
often referred to as empirical tuberculosis treatment.

In settings with high rates of empirical treatment, the 
eff ect of Xpert and other new tuberculosis tests such as the 
urine LAM (lipoarabinomannan) lateral fl ow assay11 
on individual-level outcomes and population-level 
epidemiology might be lower than predicted (table). 
Although the number of bacteriologically confi rmed 

diagnoses will increase with the roll-out of Xpert, how 
many of these newly detected patients would have been 
placed on treatment in the absence of Xpert, and when this 
would have occurred, is unknown. A proposed benefi t of 
Xpert is improved outcomes (eg, lower mortality) in the 
sickest individuals; however, doctors are most likely to treat 
the same patients empirically (and treat them rapidly), 
such that the incremental benefi t of Xpert might be 
diminished. Thus, certain key questions remain: will Xpert 
actually decrease the time to treatment initiation in high-
burden settings with high rates of empirical treatment to 
an extent that aff ects outcomes for patients and ongoing 
trans mission, or will it only replace empirical tuberculosis 
treatment that would otherwise occur near the same time? 
Will Xpert change empirical tuberculosis treatment 
practice, reduce the proportion of false-negative diagnoses, 
and reduce the proportion of patients with false-positive 
results who are placed on treatment inappropriately? 
Might some patients with tuberculosis but a negative 
Xpert result not receive treatment because of increased 
confi dence in Xpert?

Empirical tuberculosis treatment initiation
Drivers of empirical treatment
The clinical basis for empirical tuberculosis treatment 
varies across settings in accordance with factors that 
contribute to a pretest probability of a patient having 
tuberculosis or a poor outcome or both, which is 
weighted against a variable and subjective threshold for 
treatment initiation (fi gure). Such factors include 
baseline tuberculosis prevalence (eg, among patients 
with HIV with advanced immunosuppression), a clinical 
presentation suggestive of tuberculosis, results (if any) of 
adjunctive but non-confi rmatory diagnostic methods 
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  to	
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  TB	
  case	
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  ✓	
  

Analy&c	
  approach	
  II	
  

•  Calibrated	
  model	
  used	
  to	
  project	
  TB	
  diagnos&c	
  performance	
  	
  
and	
  epi	
  outcomes	
  over	
  10	
  years	
  (2017-­‐2027)	
  

•  Two	
  scenarios:	
  
	
  (1)	
  Status-­‐quo	
  (predominantly	
  smear)	
  
	
  (2)	
  Xpert	
  adop&on	
  to	
  fully	
  replace	
  smear	
  for	
  diagnosis	
  

•  Sensi&vity	
  analyses	
  to	
  describe	
  how	
  responses	
  to	
  Xpert	
  
adop&on	
  (changes	
  in	
  rates	
  of	
  culture,	
  clinical	
  diagnosis,	
  and	
  
referral	
  for	
  2nd-­‐line	
  regimens)	
  influence	
  policy	
  effects	
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Country	
   No&fica&ons	
  per	
  
100K	
  

True	
  Pos	
  No&f	
  
per	
  100K	
  

Posi&ve	
  
Predic&ve	
  Value	
  

Nega&ve	
  
Predic&ve	
  Value	
  

COD	
   159	
   99	
   61.9	
   97.5	
  
KEN	
   179	
   109	
   60.7	
   94.0	
  
ZMB	
   248	
   151	
   60.9	
   94.4	
  
BRA	
   37	
   29	
   78.8	
   97.9	
  
KHM	
   271	
   120	
   44.2	
   98.0	
  
THA	
   92	
   36	
   39.7	
   98.8	
  
RUS	
   73	
   61	
   82.5	
   88.3	
  
MMR	
   306	
   118	
   38.5	
   97.3	
  
PHL	
   319	
   133	
   41.6	
   94.9	
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Country	
   No&fica&ons	
  per	
  
100K	
  

True	
  Pos	
  No&f	
  
per	
  100K	
  

Posi&ve	
  
Predic&ve	
  Value	
  

Nega&ve	
  
Predic&ve	
  Value	
  

COD	
   159	
   99	
   61.9	
   97.5	
  
KEN	
   179	
   109	
   60.7	
   94.0	
  
ZMB	
   248	
   151	
   60.9	
   94.4	
  
BRA	
   37	
   29	
   78.8	
   97.9	
  
KHM	
   271	
   120	
   44.2	
   98.0	
  
THA	
   92	
   36	
   39.7	
   98.8	
  
RUS	
   73	
   61	
   82.5	
   88.3	
  
MMR	
   306	
   118	
   38.5	
   97.3	
  
PHL	
   319	
   133	
   41.6	
   94.9	
  

Country	
   No&fica&ons	
  	
  
per	
  100K	
  

True	
  Pos	
  No&f	
  
per	
  100K	
  

Posi&ve	
  
Predic&ve	
  Value	
  

Nega&ve	
  
Predic&ve	
  Value	
  

COD	
   162	
  (102%)	
   116	
  (118%)	
   71.5	
  (116%)	
   99.4	
  (102%)	
  
KEN	
   182	
  (102%)	
   114	
  (105%)	
   62.5	
  (103%)	
   97.8	
  (104%)	
  
ZMB	
   252	
  (102%)	
   157	
  (104%)	
   62.1	
  (102%)	
   98.0	
  (104%)	
  
BRA	
   41	
  (109%)	
   30	
  (104%)	
   75.0	
  (95%)	
   99.5	
  (102%)	
  
KHM	
   274	
  (101%)	
   125	
  (104%)	
   45.6	
  (103%)	
   99.5	
  (102%)	
  
THA	
   80	
  (87%)	
   39	
  (106%)	
   48.6	
  (122%)	
   99.7	
  (101%)	
  
RUS	
   81	
  (110%)	
   67	
  (110%)	
   82.3	
  (100%)	
   97.2	
  (110%)	
  
MMR	
   305	
  (100%)	
   120	
  (102%)	
   39.4	
  (102%)	
   98.9	
  (102%)	
  
PHL	
   313	
  (98%)	
   142	
  (107%)	
   45.2	
  (109%)	
   98.8	
  (104%)	
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Country	
   TB	
  Incidence	
  
per	
  100K	
  

TB	
  Mortality	
  
per	
  100K	
  

MDR-­‐TB	
  Prevalence	
  
per	
  100K	
  

COD	
   159	
   99	
   61.9	
  
KEN	
   179	
   109	
   60.7	
  
ZMB	
   248	
   151	
   60.9	
  
BRA	
   37	
   29	
   78.8	
  
KHM	
   271	
   120	
   44.2	
  
THA	
   92	
   36	
   39.7	
  
RUS	
   73	
   61	
   82.5	
  
MMR	
   306	
   118	
   38.5	
  
PHL	
   319	
   133	
   41.6	
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Country	
   TB	
  Incidence	
  
per	
  100K	
  

TB	
  Mortality	
  
per	
  100K	
  

MDR-­‐TB	
  Prevalence	
  
per	
  100K	
  

COD	
   159	
   99	
   61.9	
  
KEN	
   179	
   109	
   60.7	
  
ZMB	
   248	
   151	
   60.9	
  
BRA	
   37	
   29	
   78.8	
  
KHM	
   271	
   120	
   44.2	
  
THA	
   92	
   36	
   39.7	
  
RUS	
   73	
   61	
   82.5	
  
MMR	
   306	
   118	
   38.5	
  
PHL	
   319	
   133	
   41.6	
  

Country	
   TB	
  Incidence	
  
per	
  100K	
  

TB	
  Mortality	
  
per	
  100K	
  

MDR-­‐TB	
  Prevalence	
  
per	
  100K	
  

COD	
   130	
  (94%)	
   34	
  (88%)	
   5.4	
  (86%)	
  
KEN	
   229	
  (99%)	
   42	
  (97%)	
   5.9	
  (94%)	
  
ZMB	
   459	
  (100%)	
   116	
  (99%)	
   34.1	
  (98%)	
  
BRA	
   30	
  (97%)	
   4	
  (95%)	
   0.3	
  (80%)	
  
KHM	
   86	
  (97%)	
   14	
  (91%)	
   1.4	
  (81%)	
  
THA	
   57	
  (96%)	
   15	
  (94%)	
   2.4	
  (86%)	
  
RUS	
   60	
  (92%)	
   13	
  (93%)	
   9.1	
  (80%)	
  
MMR	
   181	
  (100%)	
   50	
  (99%)	
   18.6	
  (97%)	
  
PHL	
   207	
  (98%)	
   15	
  (93%)	
   15.5	
  (92%)	
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Discussion	
  I	
  

•  Knowing	
  the	
  rela&ve	
  test	
  characteris&cs	
  of	
  Xpert	
  and	
  smear	
  
insufficient	
  for	
  understanding	
  impact	
  of	
  Xpert	
  adop&on	
  	
  

•  Even	
  without	
  effects	
  on	
  subsequent	
  cascade,	
  results	
  suggest	
  
smaller	
  impact	
  for	
  Xpert	
  adop&on	
  than	
  earlier	
  studies:	
  	
  many	
  TB	
  
cases	
  missed	
  by	
  smear	
  caught	
  by	
  culture	
  or	
  clinical	
  diagnosis	
  

•  Epi	
  impact	
  of	
  Xpert	
  adop&on	
  smaller	
  s&ll	
  if	
  clinicians	
  less	
  likely	
  to	
  
request	
  culture	
  or	
  make	
  clinical	
  diagnoses	
  following	
  neg	
  Xpert.	
  
At	
  the	
  extreme,	
  incremental	
  impact	
  of	
  Xpert	
  adop&on	
  negligible	
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Discussion	
  II	
  

•  Reliance	
  on	
  clinical	
  diagnosis	
  is	
  not	
  harmless,	
  given	
  poor	
  
performance	
  characteris&cs	
  	
  

•  Given	
  low	
  specificity,	
  substan&al	
  use	
  of	
  clinical	
  diagnosis	
  will	
  
increase	
  false-­‐posi&ve	
  diagnoses	
  if	
  pushing	
  for	
  greater	
  
sensi&vity,	
  or	
  tes&ng	
  groups	
  with	
  lower	
  TB	
  prevalence	
  

•  With	
  risks	
  of	
  false-­‐posi&ve	
  diagnosis,	
  important	
  to	
  take	
  
account	
  of	
  the	
  consequences	
  for	
  these	
  individuals	
  

•  Assessing	
  op&mality	
  of	
  diagnos&c	
  algorithms	
  solely	
  through	
  TB	
  
epi	
  impact	
  is	
  too	
  narrow	
  a	
  set	
  of	
  criteria	
  

34	
  



Poten&al	
  for	
  new	
  diagnos&cs	
  to	
  improve	
  TB	
  case	
  detec&on	
  ✓	
  

Limita&ons	
  

•  Study	
  only	
  deals	
  with	
  some	
  of	
  the	
  programma&c	
  issues	
  
encountered	
  with	
  Xpert	
  adop&on,	
  not	
  comprehensive	
  

•  Study	
  relied	
  heavily	
  on	
  repor&ng	
  data	
  to	
  iden&fy	
  how	
  TB	
  
diagnosis	
  achieved	
  in	
  rou&ne	
  programs	
  à	
  results	
  sensi&ve	
  to	
  
repor&ng	
  biases	
  

•  Culture	
  is	
  criterion	
  standard	
  for	
  test	
  evalua&on,	
  but	
  ignores	
  
culture-­‐nega&ve	
  TB	
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