The potential for new diagnostics to improve TB case detection

A transmission dynamic model of nine high-burden countries

Nicolas Menzies Harvard TH Chan School of Public Health October 13, 2017 48th Union World Conference on Lung Health, Guadalajara

Conflict of interest disclosure

I have **no**, real or perceived, direct or indirect conflicts of interest that relate to this presentation.

□ I have the following, real or perceived direct or indirect conflicts of interest that relate to this presentation:

Affiliation / financial interest	Nature of conflict / commercial company name
Tobacco-industry and tobacco corporate affiliate related conflict of interest	None
Grants/research support (to myself, my institution or department):	None
Honoraria or consultation fees:	None
Participation in a company sponsored bureau:	None
Stock shareholder:	None
Spouse/partner – conflict of interest (as above):	None
Other support or other potential conflict of interest:	None

This event is accredited for CME credits by EBAP and speakers are required to disclose their potential conflict of interest going back 3 years prior to this presentation. The intent of this disclosure is not to prevent a speaker with a conflict of interest (any significant financial relationship) a speaker has with manufacturers or providers of any commercial products or services relevant to the talk) from making a presentation, but rather to provide listeners with information on which they can make their own judgment. It remains for audience members to determine whether the speaker's interests or relationships may influence the presentation. Drug or device advertisement is strictly forbidden.

• Improving case detection for active disease a central challenge for efforts to accelerate TB control in high burden settings

• Improving case detection for active disease a central challenge for efforts to accelerate TB control in high burden settings

Modelling to assess feasibility and costeffectiveness of achieving End TB 2025 targets:

- Improving case detection one of the most impactful strategies considered
- Better case detection critical for chances of reaching 2025 incidence and mortality targets

Houben et al Lancet GH 2016; Menzies et al Lancet GH 2016

• Recent tech development provides more sensitive diagnostics

• Recent tech development provides more sensitive diagnostics

GeneXpert MTB/RIF:

HARVARD

T.H. CHAN

B Modelling and

malvsis Consortium

- Identifies more than two-thirds of the TB cases that would be missed by sputumsmear microscopy
- Detects rifampicin resistance with high sensitivity and specificity

Boehme et al NEJM 2010; Boehme et al Lancet 2011; Steingart et al Cochrane Rev 2013

• Recent tech development provides more sensitive diagnostics

GeneXpert MTB/RIF:

HARVARD

T.H. CHAN

CHOOL OF BURLIC HEALTH

FB Modelling and

Analysis Consortium

- Early projections suggested large impact of Xpert as replacement for smear in key high-burden settings
- Xpert adoption projected to be both effective and cost-effective

<text><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

Vassall et al PLoS Med 2011; Menzies et al PLoS Med 2012

TB Modelling and

Analysis Consortium

HARVARD

T.H. CHAN

• Recent tech development provides more sensitive diagnostics

Menzies et al PLoS Med 2012

• Despite promise, pragmatic trials of Xpert adoption show modest effects

Modelling and

vsis Consortium

T.H. CHAN

• Despite promise, pragmatic trials of Xpert adoption show modest effects

Empirical studies of Xpert introduction

- Smaller impact on case notifications that originally anticipated, little impact on mortality
- High rates of empirical treatment for individuals testing negative to the first diagnostic test
- Negative Xpert results generating fewer requests for culture, fewer patients diagnosed empirically

McCarthy et al JAIDS 2016; Churchyard Lancet GH 2015; Theron et al Lancet ID 2014; Theron et al Lancet 2014

Research questions

• How does the effect of Xpert adoption on diagnostic outcomes and TB epidemiology depend on other dimensions of algorithm performance?

• How might the impact of Xpert adoption differ across a range of high-burden countries?

Analytic approach I

- Developed a transmission dynamic TB model to estimate implications of algorithm performance for TB outcomes and epidemiology
- Model parameterized for 9 high burden countries: Brazil, Cambodia, DRC, Kenya, Myanmar, the Philippines, Russia, Thailand, Zimbabwe
- Each country: calibration to range of data describing population demography, TB and HIV epi, and service utilization / quality

Study model: core TB subdivision

TB Modelling and Analysis Consortium

HARVARD

T.H. CHAN

Study model: other model subdivisions

TB Modelling and Analysis Consortium HARVARD

T.H. CHAN

Model calibration I (Kenya)

TB Modelling and

Analysis Consortium

HARVARD

T.H. CHAN

SCHOOL OF PUBLIC HEALTH

Model calibration II (Kenya)

 \bigcirc

Analysis Consortium

T.H. CHAN

SCHOOL OF PUBLIC HEALTH

Analytic approach II

- Calibrated model used to project TB diagnostic performance and epi outcomes over 10 years (2017-2027)
- Two scenarios:
 - (1) Status-quo (predominantly smear)(2) Xpert adoption to fully replace smear for diagnosis
- Sensitivity analyses to describe how responses to Xpert adoption (changes in rates of culture, clinical diagnosis, and referral for 2nd-line regimens) influence policy effects

Basic TB suspect algorithm structure Smear/Xpert Get culture? Culture Empirical TB diagnosis positive TB diagnosis negative

TB Modelling and Analysis Consortium

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

Basic algorithm structure

TB Modelling and Analysis Consortium

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH

 $\overline{\mathbf{T}}$

Basic algorithm structure

Sensitivity and specificity of clinical diagnosis

HARVARD

T.H. CHAN

TB Modelling and Analysis Consortium

RESULTS

<u>Base case results</u>: Outcomes for diagnostic performance in 2019 under status-quo scenario

Country	Notifications per 100K	True Pos Notif per 100K	Positive Predictive Value	Negative Predictive Value
COD	159	99	61.9	97.5
KEN	179	109	60.7	94.0
ZMB	248	151	60.9	94.4
BRA	37	29	78.8	97.9
КНМ	271	120	44.2	98.0
THA	92	36	39.7	98.8
RUS	73	61	82.5	88.3
MMR	306	118	38.5	97.3
PHL	319	133	41.6	94.9

<u>Base case results</u>: Outcomes for diagnostic performance in 2019 under **Xpert adoption scenario**

Country		Intifications ner	True Pos Notif	Positive	Negative	
	Country	Notifications	True Pos Notif	Positive	Negative	
co		per 100K	per 100K	Predictive Value	Predictive Valu	le
KF	COD	162 (102%)	116 (118%)	71.5 (116%)	99.4 (102%)	
71/	KEN	182 (102%)	114 (105%)	62.5 (103%)	97.8 (104%)	
BR	ZMB	252 (102%)	157 (104%)	62.1 (102%)	98.0 (104%)	
КН	BRA	41 (109%)	30 (104%)	75.0 (95%)	99.5 (102%)	
тн	КНМ	274 (101%)	125 (104%)	45.6 (103%)	99.5 (102%)	
RII	ТНА	80 (87%)	39 (106%)	48.6 (122%)	99.7 (101%)
	RUS	81 (110%)	67 (110%)	82.3 (100%)	97.2 (110%)
рн	MMR	305 (100%)	120 (102%)	39.4 (102%)	98.9 (102%)	
FII	PHL	313 (98%)	142 (107%)	45.2 (109%)	98.8 (104%)	

TB Modelling and Analvsis Consortium HARVARD

T.H. CHAN

<u>Base case results</u>: Outcomes for epidemiological outcomes in 2019 under status-quo scenario

Country	TB Incidence per 100K	TB Mortality per 100K	MDR-TB Prevalence per 100K
COD	159	99	61.9
KEN	179	109	60.7
ZMB	248	151	60.9
BRA	37	29	78.8
KHM	271	120	44.2
ТНА	92	36	39.7
RUS	73	61	82.5
MMR	306	118	38.5
PHL	319	133	41.6

<u>Base case results</u>: Outcomes for epidemiological outcomes in 2019 under **Xpert adoption scenario**

Cour	tru	TB Incidence	TB Mortality	MDR-TB Prevalence
	Country	TB Incidence	TB Mortality	MDR-TB Prevalence
COD		per 100K	per 100K	per 100K
KEN	COD	130 (94%)	34 (88%)	5.4 (86%)
	KEN	229 (99%)	42 (97%)	5.9 (94%)
	ZMB	459 (100%)	116 (99%)	34.1 (98%)
	BRA	30 (97%)	4 (95%)	0.3 (80%)
ТНА	КНМ	86 (97%)	14 (91%)	1.4 (81%)
RLIS	ТНА	57 (96%)	15 (94%)	2.4 (86%)
	RUS	60 (92%)	13 (93%)	9.1 (80%)
DHI	MMR	181 (100%)	50 (99%)	18.6 (97%)
1116	PHL	207 (98%)	15 (93%)	15.5 (92%)

TB Modelling and Analysis Consortium HARVARD

T.H. CHAN

<u>Sensitivity analysis 1</u>: Reduced use of culture following negative Xpert result (as compared to smear)

Potential for new diagnostics to improve TB case detection

TB Modelling and

Analysis Consortium

HARVARD

T.H. CHAN

SCHOOL OF PUBLIC HEALTH

<u>Sensitivity analysis 1</u>: Reduced use of culture following negative Xpert result (as compared to smear)

<u>Sensitivity analysis 2</u>: Reduced use of culture and clinical diagnosis following negative Xpert result (vs. smear)

TB Modelling and

Analysis Consortium

HARVARD

T.H. CHAN

CHOOL OF PUBLIC HEALTH

<u>Sensitivity analysis 2</u>: Reduced use of culture and clinical diagnosis following negative Xpert result (vs. smear)

B Modelling and

Analysis Consortium

HARVARD

T.H. CHAN

CHOOL OF BURLIC HEALTH

<u>Sensitivity analysis 3</u>: Better access to 2nd line regimens for Xpert-RIF positive results

FB Modelling and

Analysis Consortium

HARVARD

T.H. CHAN

CHOOL OF BURLIC HEALTH

<u>Sensitivity analysis 3</u>: Better access to 2nd line regimens for Xpert-RIF positive results

TB Modelling and

Analysis Consortium

HARVARD

T.H. CHAN

CHOOL OF BURLIC HEALTH

Discussion I

- Knowing the relative test characteristics of Xpert and smear insufficient for understanding impact of Xpert adoption
- Even without effects on subsequent cascade, results suggest smaller impact for Xpert adoption than earlier studies: many TB cases missed by smear caught by culture or clinical diagnosis
- Epi impact of Xpert adoption smaller still if clinicians less likely to request culture or make clinical diagnoses following neg Xpert. At the extreme, incremental impact of Xpert adoption negligible

Discussion II

- Reliance on clinical diagnosis is not harmless, given poor performance characteristics
- Given low specificity, substantial use of clinical diagnosis will increase false-positive diagnoses if pushing for greater sensitivity, or testing groups with lower TB prevalence
- With risks of false-positive diagnosis, important to take account of the consequences for these individuals
- Assessing optimality of diagnostic algorithms solely through TB epi impact is too narrow a set of criteria

Limitations

- Study only deals with some of the programmatic issues encountered with Xpert adoption, not comprehensive
- Study relied heavily on reporting data to identify how TB diagnosis achieved in routine programs → results sensitive to reporting biases
- Culture is criterion standard for test evaluation, but ignores culture-negative TB

Acknowledgements

Coauthors/collaborators

Alyssa Bilinski, Reza Yaesoubi, Ted Cohen, Joshua Salomon

Funding TB MAC / Bill & Melinda Gates Foundation

