Bayesian evidence synthesis to estimate subnational TB incidence: an application in Brazil

Melanie H. Chitwood, MS
Yale School of Public Health
Understanding the geographic distribution of untreated active TB can help target efforts to strengthen TB control

Aim: Using only routinely available data, develop and apply a new method for estimating incidence and the fraction of incident cases that receive treatment
Data Inputs

- For each Brazilian state and the Federal District (n = 27) from 2007 – 2016:
 - Tuberculosis treatment notifications
 - Death records for TB-related and ill-defined causes
 - Demographic and health system survey data
 - Population, GDP, primary healthcare coverage
Data Inputs

- Derived inputs
 - Mortality system coverage estimates
 - Probability that a TB death is coded with a TB-related ICD-10 code
 - Probability of survival given no treatment
Model: Likelihood Functions

\[\text{Case Notifications}_{ij} \sim \text{Poisson} (\gamma_{ij} \ast \alpha_{ij} \ast \beta_{ij}) \]
\[\text{TB Mortality}_{ij} \sim \text{Poisson} (\gamma_{ij} \ast \alpha_{ij} \ast \left[(\beta_{ij} \ast \delta_{ij}) + ((1 - \beta_{ij}) \ast \mu) \right] \ast \pi_{i} \ast \rho_{ij}) \]

- \(\gamma_{ij} \) - population
- \(\alpha_{ij} \) - incidence
- \(\beta_{ij} \) - fraction treated
- \(\delta_{ij} \) - probability mortality | treatment initiation
- \(\mu \) – probability mortality | no treatment initiation
- \(\pi_{i} \) - mortality system completeness
- \(\rho_{ij} \) - adjustment for systematic underreporting of TB as cause of death
Model: Transformed Parameters

\[Incidence_i = \alpha_i = \exp \left(\varphi_0 + \varphi_{1ij} + \varphi X_{ij} \right) \]

\[Fraction \ Treated_i = \beta_i = \logit^{-1} \left(\omega_0 + \omega_{1ij} + \omega X_{ij} \right) \]

- \(\varphi_0 \) and \(\omega_0 \) are constants
- \(\varphi_{1ij} \) and \(\omega_{1ij} \) are state-time random effects, allowed to follow a random walk
- \(X_{ij} \) is vector of state-level covariates (GDP per capita, primary healthcare coverage); \(\varphi \) and \(\omega \) are vectors of regression coefficients
Outcomes: 2016 Estimates

Incidence rate

Fraction treated

Incidence per 100,000

>12 – 24

>24 – 36

>36 – 48

>48 – 60

>60

Fraction Treated

80% or less

>80% – 88%

>88% – 90%

>90% – 92%

>92%
Outcomes: 10-year time trend
Advantages

- Does not require primary data collection
- Distinguishes between areas with low burden and areas of low fraction treated.
- Model leverages known relationships between treatment and mortality
 - Internal consistency creates opportunities for model checking
Limitations

- Data limitations: treatment free survival, TB death under-reporting
- Multiple databases, no consistent patient ID among them: GAL-TB, SINAN-TB, SITE-TB
- Treatment reporting assumption is valid in Brazil, but may not hold in other settings
Acknowledgements

- **Nick Menzies**, Harvard T.H. Chan School of Public Health
- **Ted Cohen**, Yale University School of Public Health
- **Marcia Castro**, Harvard T.H. Chan School of Public Health
- **Mauro Sanchez**, University of Brasilia
- **Denise Arakaki, Patricia Oliveira, Daniele Pelissari, Gabriela Marques da Silva, and Marlí Souza Rocha**, Brazilian Ministry of Health
- **Philippe Glaziou**, WHO